Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prostate ; 76(3): 286-93, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26493492

ABSTRACT

BACKGROUND: Fyn is a kinase that is upregulated in a subset of metastatic castration-resistant prostate cancer. Saracatinib potently inhibits Fyn activation. We have noted a relationship between Fyn expression and directional motility, a cellular process related to metastasis. As such we hypothesized that treatment with saracatinib would increase the time required to develop new metastatic lesions. METHODS: Patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel were eligible for enrollment. This study was executed as a randomized discontinuation trial. During a lead-in phase of two 28-Day cycles, all patients received saracatinib. Afterward, patients with radiographically stable disease were randomized to either saracatinib or placebo. Patients continued treatment until evidence of new metastasis. RESULTS: Thirty-one patients were treated. Only 26% of patients had stable disease after 8 weeks and thus proceeded to randomization. This required early termination of the study for futility. The 70% of patients who progressed after the lead-in phase exhibited expansion of existing lesions or decompensation due to clinical progression without new metastatic lesions. Fatigue was reported in more than 25% of patients (all grades) with only two patients experiencing grade 3 toxicity. Other grade 3 adverse events included dehydration, thrombocytopenia, and weakness. CONCLUSIONS: This study was unable to determine if saracatinib had potential as metastasis inhibitor. Metastasis inhibition by saracatinib may still be viable in an earlier time in the disease history.


Subject(s)
Academic Medical Centers , Antineoplastic Agents/therapeutic use , Benzodioxoles/therapeutic use , Neoplasm Metastasis/drug therapy , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Quinazolines/therapeutic use , Aged , Aged, 80 and over , Chicago , Humans , Male , Middle Aged
2.
Oncotarget ; 6(42): 44072-83, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26624980

ABSTRACT

FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC) tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Differentiation , Cell Movement , Liver Neoplasms/enzymology , Neuroendocrine Tumors/enzymology , Prostatic Neoplasms/enzymology , Proto-Oncogene Proteins c-fyn/metabolism , Animals , Biomarkers, Tumor/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation , Chromogranin A/metabolism , Computer Simulation , Databases, Genetic , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/pharmacology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Male , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Neoplasm Invasiveness , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/secondary , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Time Factors , Transfection , Tumor Burden , Up-Regulation
3.
Clin Cancer Res ; 17(10): 3112-22, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21364031

ABSTRACT

PURPOSE: Fyn is a member of the Src family of kinases that we have previously shown to be overexpressed in prostate cancer. This study defines the biological impact of Fyn inhibition in cancer using a PC3 prostate cancer model. EXPERIMENTAL DESIGN: Fyn expression was suppressed in PC3 cells using an shRNA against Fyn (PC3/FYN-). Knockdown cells were characterized using standard growth curves and time-lapse video microscopy of wound assays and Dunn Chamber assays. Tissue microarray analysis was used to verify the physiologic relevance of the HGF/MET axis in human samples. Flank injections of nude mice were performed to assess in vivo growth characteristics. RESULTS: HGF was found to be sufficient to drive Fyn-mediated events. Compared to control transductants (PC3/Ctrl), PC3/FYN- showed a 21% decrease in growth at 4 days (P = 0.05). PC3/FYN- cells were 34% longer than control cells (P = 0.018) with 50% increase in overall surface area (P < 0.001). Furthermore, when placed in a gradient of HGF, PC3/FYN- cells showed impaired directed chemotaxis down an HGF gradient in comparison to PC3/Ctrl (P = 0.001) despite a 41% increase in cellular movement speed. In vivo studies showed 66% difference of PC3/FYN- cell growth at 8 weeks using bidimensional measurements (P = 0.002). CONCLUSIONS: Fyn plays an important role in prostate cancer biology by facilitating cellular growth and by regulating directed chemotaxis-a key component of metastasis. This finding bears particular translational importance when studying the effect of Fyn inhibition in human subjects.


Subject(s)
Cell Shape , Hepatocyte Growth Factor/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-fyn/physiology , Proto-Oncogene Proteins c-met/metabolism , Receptors, Growth Factor/metabolism , Tropism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Shape/drug effects , Cell Shape/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hepatocyte Growth Factor/genetics , Humans , Male , Mice , Mice, Nude , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-met/genetics , RNA, Small Interfering/pharmacology , Receptors, Growth Factor/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Tropism/drug effects , Tropism/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...