Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 14(12): 2683-2690, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31674754

ABSTRACT

Prenylation is a common step in the biosynthesis of many natural products and plays an important role in increasing their structural diversity and enhancing biological activity. Muscoride A is a linear peptide alkaloid that contain two contiguous oxazoles and unusual prenyl groups that protect the amino- and carboxy-termini. Here we identified the 12.7 kb muscoride (mus) biosynthetic gene clusters from Nostoc spp. PCC 7906 and UHCC 0398. The mus biosynthetic gene clusters encode enzymes for the heterocyclization, oxidation, and prenylation of the MusE precursor protein. The mus biosynthetic gene clusters encode two copies of the cyanobactin prenyltransferase, MusF1 and MusF2. The predicted tetrapeptide substrate of MusF1 and MusF2 was synthesized through a novel tandem cyclization route in only eight steps. Biochemical assays demonstrated that MusF1 acts on the carboxy-terminus while MusF2 acts on the amino-terminus of the tetrapeptide substrate. We show that the MusF2 enzyme catalyzes the reverse or forward prenylation of amino-termini from Nostoc spp. PCC 7906 and UHCC 0398, respectively. This finding expands the regiospecific chemical functionality of cyanobactin prenyltransferases and the chemical diversity of the cyanobactin family of natural products to include bis-prenylated polyoxazole linear peptides.


Subject(s)
Oxazoles/metabolism , Pyrrolidines/metabolism , Biosynthetic Pathways/genetics , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Multigene Family , Peptides, Cyclic/metabolism , Prenylation
2.
Appl Environ Microbiol ; 84(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29305504

ABSTRACT

Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of the secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes, including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA, wecA, and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens, yet igaA from Salmonella enterica, yrfF from Escherichia coli, and an uncharacterized predicted ortholog from Klebsiella pneumoniae complemented the gumB mutant secondary metabolite defects, suggesting highly conserved function. These data support the idea that UmoB/IgaA family proteins are functionally conserved and extend the known regulatory influence of UmoB/IgaA family proteins to the control of competition-associated secondary metabolites and biofilm formation.IMPORTANCE IgaA/UmoB family proteins are found in members of the Enterobacteriaceae family of bacteria, which are of environmental and public health importance. IgaA/UmoB family proteins are thought to be inner membrane proteins that report extracellular stresses to intracellular signaling pathways that respond to environmental challenge. This study introduces a new member of the IgaA/UmoB family and demonstrates a high degree of functional similarity between IgaA/UmoB family proteins. Moreover, this study extends the phenomena controlled by IgaA/UmoB family proteins to include the biosynthesis of antimicrobial secondary metabolites.


Subject(s)
Bacterial Proteins/genetics , Depsipeptides/metabolism , Membrane Proteins/genetics , Prodigiosin/metabolism , Serratia marcescens/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Mutation , Sequence Analysis, DNA , Serratia marcescens/metabolism
3.
Microbiology (Reading) ; 163(2): 280-288, 2017 02.
Article in English | MEDLINE | ID: mdl-28270264

ABSTRACT

The EepR transcription factor positively regulates secondary metabolites and tissue-damaging metalloproteases. To gain insight into mechanisms by which EepR regulates pigment and co-regulated factors, genetic suppressor analysis was performed. Suppressor mutations that restored pigment to the non-pigmented ∆eepR mutant mapped to the hexS ORF. Mutation of hexS also restored haemolysis, swarming motility and protease production to the eepR mutant. HexS is a known direct and negative regulator of secondary metabolites in Serratia marcescens and is a LysR family regulator and an orthologue of LrhA. Here, we demonstrate that HexS directly controls eepR and the serralysin gene prtS. EepR was shown to directly regulate eepR expression but indirectly regulate hexS expression. Together, these data indicate that EepR and HexS oppose each other in controlling stationary phase-associated molecules and enzymes.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Genes, Regulator/genetics , Metalloendopeptidases/biosynthesis , Secondary Metabolism/genetics , Serratia marcescens/genetics , Serratia marcescens/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements/genetics , Depsipeptides/biosynthesis , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Flagella/metabolism , Mass Spectrometry , Prodigiosin/biosynthesis , Serratia marcescens/growth & development , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL