Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 951: 175648, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168340

ABSTRACT

Climate change can have positive and negative effects on the carbon pools and budgets in soil and plant fractions, but net effects are unclear and expected to vary widely within the arctic. We report responses after nine years (2012-2021) of increased snow depth (snow fences) and summer warming (open top chambers) and the combination on soil and plant carbon pools within a tundra ecosystem in West Greenland. Data included characteristics of depth-specific soil samples, including the rhizosphere soil, as well as vegetation responses of NDVI-derived traits, plant species cover and aboveground biomass, litter and roots. Furthermore, natural vegetation growth through the study period was quantified based on time-integrated NDVI Landsat 8 satellite imagery. Our results showed that summer warming resulted in a significant and positive vegetation response driven by the deciduous low shrub Betula nana (no other vascular plant species), while snow addition alone resulted in a significant negative response for Betula. A significant positive effect of summer warming was also observed for moss biomass, possibly driven increasing shade by Betula. The aboveground effects cascaded to belowground traits. The rhizosphere soil characteristics differed from those of the bulk soil regardless of treatment. Only the rhizosphere fraction showed responses to treatment, as soil organic C stock increased in near-surface and top 20 cm with summer warming. We observed no belowground effects from snow addition. The study highlights the plant species response to treatment followed by impacts on belowground C pools, mainly driven by dead fine roots via Betula nana. We conclude that the summer warming treatment and snow addition treatment separately showed opposing effects on ecosystem C pools, with lack of interactive effects between main factors in the combination treatment. Furthermore, changes in soil C are more clearly observed in the rhizosphere soil fraction, which should receive more attention in the future.

2.
Glob Chang Biol ; 30(1): e17087, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273494

ABSTRACT

Increasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems. Here we assess the short-term (1-3 years) and long-term (5-8 years) effects of increased snow depth (snow fences) (on average + 70 cm) and warming (open top chambers; 1-3°C increase) and the combination in a factorial design on all key components of the daytime carbon dioxide (CO2 ) fluxes in a wide-spread heath tundra ecosystem in West Greenland. The warming treatment increased ecosystem respiration (ER) on a short- and long-term basis, while gross ecosystem photosynthesis (GEP) was only increased in the long term. Despite the difference in the timing of responses of ER and GEP to the warming treatment, the net ecosystem exchange (NEE) of CO2 was unaffected in the short term and in the long term. Although the structural equation model (SEM) indicates a direct relationship between seasonal accumulated snow depth and ER and GEP, there were no significant effects of the snow addition treatment on ER or GEP measured over the summer period. The combination of warming and snow addition turned the plots into net daytime CO2 sources during the growing season. Interestingly, despite no significant changes in air temperature during the snow-free time during the experiment, control plots as well as warming plots revealed significantly higher ER and GEP in the long term compared to the short term. This was in line with the satellite-derived time-integrated normalized difference vegetation index of the study area, suggesting that more factors than air temperature are drivers for changes in arctic tundra ecosystems.


Subject(s)
Carbon Dioxide , Ecosystem , Seasons , Carbon Dioxide/chemistry , Temperature , Snow , Tundra , Arctic Regions , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL