Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049059

ABSTRACT

Ni-based superalloys have been extensively employed in the aerospace field because of their excellent thermal and mechanical stabilities at high temperatures. With these advantages, many sought to study the influence of fusion-reliant additive manufacturing (AM) techniques for part fabrication/reparation. However, their fabrication presents many problems related to the melting and solidification defects from the feedstock material. Such defects consist of oxidation, inclusions, hot tearing, cracking, and elemental segregation. Consequentially, these defects created a need to discover an AM technique that can mitigate these disadvantages. The cold spray (CS) process is one additive technique that can mitigate these issues. This is largely due to its cost-effectiveness, low temperature, and fast and clean deposition process. However, its effectiveness for Ni-based superalloy fabrication and its structural performance has yet to be determined. This review aimed to fill this knowledge gap in two different ways. First, the advantages of CS technology for Ni-based superalloys compared with thermal-reliant AM techniques are briefly discussed. Second, the processing-structure-property relationships of these deposits are elucidated from microstructural, mechanical, and tribological (from low to high temperatures) perspectives. Considering the porous and brittle defects of CS coatings, a comprehensive review of the post-processing techniques for CS-fabricated Ni superalloys is also introduced. Based on this knowledge, the key structure-property mechanisms of CS Ni superalloys are elucidated with suggestions on how knowledge gaps in the field can be filled in the near future.

2.
Nanomaterials (Basel) ; 11(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067483

ABSTRACT

Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL