Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(7): B182-B187, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37132905

ABSTRACT

Atomic layer deposition (ALD)-grown zirconia films underwent irradiation by 100 keV protons at fluences ranging from 1⋅1012 p +/c m 2 through 5⋅1014 p +/c m 2. The induced structural damage was modeled using the stopping and range of ions in matter (SRIM) and compared with the change of the optical properties characterized by ellipsometry, spectrophotometry, and x-ray reflectometry. Proton-induced contamination of the optical surface due to deposition of a carbon-rich layer was determined. Correct estimation of the substrate damage was shown to be critical for reliable evaluation of the optical constants of the irradiated films. The ellipsometric angle Δ is shown to be sensitive to both the presence of the buried damaged zone in the irradiated substrate and the contamination layer on the surface of the samples. The complex chemistry in carbon-doped zirconia accommodating over-stoichiometric oxygen is discussed, along with the impact of the film composition change on the refractive index of the irradiated films.

2.
Sci Rep ; 10(1): 21537, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298995

ABSTRACT

We report on the creation and characterization of the luminescence properties of high-purity diamond substrates upon F ion implantation and subsequent thermal annealing. Their room-temperature photoluminescence emission consists of a weak emission line at 558 nm and of intense bands in the 600-750 nm spectral range. Characterization at liquid He temperature reveals the presence of a structured set of lines in the 600-670 nm spectral range. We discuss the dependence of the emission properties of F-related optical centers on different experimental parameters such as the operating temperature and the excitation wavelength. The correlation of the emission intensity with F implantation fluence, and the exclusive observation of the afore-mentioned spectral features in F-implanted and annealed samples provides a strong indication that the observed emission features are related to a stable F-containing defective complex in the diamond lattice.

3.
Nanotechnology ; 26(6): 065602, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25605224

ABSTRACT

We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...