Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
ISME J ; 17(12): 2247-2258, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853183

ABSTRACT

The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , Humans , Piscirickettsia/genetics , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , RNA, Ribosomal, 16S/genetics , Fishes , Fish Diseases/microbiology
2.
R Soc Open Sci ; 9(8): 220555, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061525

ABSTRACT

Multi-kingdom community complexity and the chemically mediated dynamics between bacteria and insects have recently received increased attention in carrion research. However, the strength of these inter-kingdom interactions and the factors that regulate them are poorly studied. We used 75 piglet cadavers across three forest regions to survey the relationship between three actors (epinecrotic bacteria, volatile organic compounds (VOCs) and flies) during the first 4 days of decomposition and the factors that regulate this interdependence. The results showed a dynamic bacterial change during decomposition (temperature-time index) and across the forest management gradient, but not between regions. Similarly, VOC emission was dynamic across a temperature-time index and the forest management gradient but did not differ between regions. However, fly occurrence was dynamic across both space and time. The strong interdependence between the three actors was mainly regulated by the temperature-time index and the study regions, thereby revealing regulation at temporal and spatial scales. Additionally, the actor interdependence was stable across a gradient of forest management intensity. By combining different actors of decomposition, we have expanded our knowledge of the holistic mechanisms regulating carrion community dynamics and inter-kingdom interactions, an important precondition for better describing food web dynamics and entire ecosystem functions.

3.
Front Microbiol ; 13: 769767, 2022.
Article in English | MEDLINE | ID: mdl-35369523

ABSTRACT

Biological soil crusts (biocrusts) harbor a diverse community of various microorganisms with microalgae as primary producers and bacteria living in close association. In mesic regions, biocrusts emerge rapidly on disturbed surface soil in forest, typically after clear-cut or windfall. It is unclear whether the bacterial community in biocrusts is similar to the community of the surrounding soil or if biocrust formation promotes a specific bacterial community. Also, many of the interactions between bacteria and algae in biocrusts are largely unknown. Through high-throughput-sequencing analysis of the bacterial community composition, correlated drivers, and the interpretation of biological interactions in a biocrust of a forest ecosystem, we show that the bacterial community in the biocrust represents a subset of the community of the neighboring soil. Bacterial families connected with degradation of large carbon molecules, like cellulose and chitin, and the bacterivore Bdellovibrio were more abundant in the biocrust compared to bulk soil. This points to a closer interaction and nutrient recycling in the biocrust compared to bulk soil. Furthermore, the bacterial richness was positively correlated with the content of mucilage producing algae. The bacteria likely profit from the mucilage sheaths of the algae, either as a carbon source or protectant from grazing or desiccation. Comparative sequence analyses revealed pronounced differences between the biocrust bacterial microbiome. It seems that the bacterial community of the biocrust is recruited from the local soil, resulting in specific bacterial communities in different geographic regions.

4.
Front Microbiol ; 13: 715637, 2022.
Article in English | MEDLINE | ID: mdl-35185839

ABSTRACT

Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.

5.
Front Microbiol ; 13: 750456, 2022.
Article in English | MEDLINE | ID: mdl-35222321

ABSTRACT

Although climate change is expected to increase the extent of drylands worldwide, the effect of drought on the soil microbiome is still insufficiently understood as for dominant but little characterized phyla like the Acidobacteria. In the present study the active acidobacterial communities of Namibian soils differing in type, physicochemical parameters, and land use were characterized by high-throughput sequencing. Water content, pH, major ions and nutrients were distinct for sandy soils, woodlands or dry agriculture on loamy sands. Soils were repeatedly sampled over a 2-year time period and covered consecutively a strong rainy, a dry, a normal rainy and a weak rainy season. The increasing drought had differential effects on different soils. Linear modeling of the soil water content across all sampling locations and sampling dates revealed that the accumulated precipitation of the preceding season had only a weak, but statistically significant effect, whereas woodland and irrigation exerted a strong positive effect on water content. The decrease in soil water content was accompanied by a pronounced decrease in the fraction of active Acidobacteria (7.9-0.7%) while overall bacterial community size/cell counts remained constant. Notably, the strongest decline in the relative fraction of Acidobacteria was observed after the first cycle of rainy and dry season, rather than after the weakest rainy season at the end of the observation period. Over the 2-year period, also the ß-diversity of soil Acidobacteria changed. During the first year this change in composition was related to soil type (loamy sand) and land use (woodland) as explanatory variables. A total of 188 different acidobacterial sequence variants affiliated with the "Acidobacteriia," Blastocatellia, and Vicinamibacteria changed significantly in abundance, suggesting either drought sensitivity or formation of dormant cell forms. Comparative physiological testing of 15 Namibian isolates revealed species-specific and differential responses in viability during long-term continuous desiccation or drying-rewetting cycles. These different responses were not determined by phylogenetic affiliation and provide a first explanation for the effect of drought on soil Acidobacteria. In conclusion, the response of acidobacterial communities to water availability is non-linear, most likely caused by the different physiological adaptations of the different taxa present.

6.
Nat Commun ; 12(1): 3918, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168127

ABSTRACT

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Soil Microbiology , Agriculture , Animals , Europe , Food Chain , Forests , Grassland , Herbivory , Insecta
7.
Glob Ecol Biogeogr ; 30(1): 4-10, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33692654

ABSTRACT

The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives.

8.
Syst Appl Microbiol ; 44(1): 126165, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33360413

ABSTRACT

The family Rhizobiaceae includes many genera of soil bacteria, often isolated for their association with plants. Herein, we investigate the genomic diversity of a group of Rhizobium species and unclassified strains isolated from atypical environments, including seawater, rock matrix or polluted soil. Based on whole-genome similarity and core genome phylogeny, we show that this group corresponds to the genus Pseudorhizobium. We thus reclassify Rhizobium halotolerans, R. marinum, R. flavum and R. endolithicum as P. halotolerans sp. nov., P. marinum comb. nov., P. flavum comb. nov. and P. endolithicum comb. nov., respectively, and show that P. pelagicum is a synonym of P. marinum. We also delineate a new chemolithoautotroph species, P. banfieldiae sp. nov., whose type strain is NT-26T (=DSM 106348T=CFBP 8663T). This genome-based classification was supported by a chemotaxonomic comparison, with increasing taxonomic resolution provided by fatty acid, protein and metabolic profiles. In addition, we used a phylogenetic approach to infer scenarios of duplication, horizontal transfer and loss for all genes in the Pseudorhizobium pangenome. We thus identify the key functions associated with the diversification of each species and higher clades, shedding light on the mechanisms of adaptation to their respective ecological niches. Respiratory proteins acquired at the origin of Pseudorhizobium were combined with clade-specific genes to enable different strategies for detoxification and nutrition in harsh, nutrient-poor environments.


Subject(s)
Extreme Environments , Phylogeny , Rhizobiaceae/classification , Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genome, Bacterial , Nucleic Acid Hybridization , Rhizobium , Sequence Analysis, DNA
9.
Nat Commun ; 11(1): 3870, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747621

ABSTRACT

Soils harbor a substantial fraction of the world's biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.


Subject(s)
Biodiversity , Ecosystem , Soil Microbiology , Soil/parasitology , Animals , Bacteria/classification , Bacteria/metabolism , Biomass , Climate , Fungi/classification , Fungi/metabolism , Geography , Hydrogen-Ion Concentration , Nematoda/classification , Nematoda/metabolism , Oligochaeta/classification , Oligochaeta/metabolism , Soil/chemistry , Temperature
10.
Front Microbiol ; 11: 1391, 2020.
Article in English | MEDLINE | ID: mdl-32695081

ABSTRACT

Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent ß-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture - the most important environmental variable - had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that - despite considerable oscillation in space and time - the abundant and resident OTUs provide a community backbone that supports much higher ß-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.

11.
Environ Microbiol ; 22(3): 917-933, 2020 03.
Article in English | MEDLINE | ID: mdl-31325219

ABSTRACT

Bacteria colonize reactive minerals in soils where they contribute to mineral weathering and transformation. So far, the specificity, patterns and dynamics of mineral colonization have rarely been assessed under natural conditions. High throughput Illumina sequencing was employed to investigate the bacterial communities assembling on illite and goethite during exposure to natural grassland soils. Two different types of organic carbon sources, simple carbon compounds representing root exudates and detritus of two dominant grassland plant species were applied, and their effects on the temporal dynamics of bacterial communities were investigated. The observed temporal patterns suggest that the surfaces of de novo exposed minerals in soils drive the establishment of bacterial communities and override the effect of the type of carbon sources and of other environmental properties. Mineral colonization was selective and specific bacterial sequence variants exhibited distinct colonization patterns, among which early, intermittent, and late colonizers could be distinguished. Based on our results, soil minerals are not only colonized by specific bacterial communities but enable a succession of different bacterial communities. Our results thereby expand the concept of the mineralosphere and provide novel insights into mechanisms of community assembly in the soil ecosystem.


Subject(s)
Bacterial Physiological Phenomena , Grassland , Minerals , Soil Microbiology , Soil/chemistry , Bacteria/genetics , Ecosystem , Plants/microbiology , RNA, Ribosomal, 16S/genetics
12.
Environ Microbiol ; 22(1): 212-228, 2020 01.
Article in English | MEDLINE | ID: mdl-31657089

ABSTRACT

Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 µM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Lakes/microbiology , Nitrification , Ammonium Compounds/metabolism , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/metabolism , Ecosystem , Oxidation-Reduction , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
13.
ISME J ; 14(2): 463-475, 2020 02.
Article in English | MEDLINE | ID: mdl-31659233

ABSTRACT

The active bacterial rhizobiomes and root exudate profiles of phytometers of six plant species growing in central European temperate grassland communities were investigated in three regions located up to 700 km apart, across diverse edaphic conditions and along a strong land use gradient. The recruitment process from bulk soil communities was identified as the major direct driver of the composition of active rhizosphere bacterial communities. Unexpectedly, the effect of soil properties, particularly soil texture, water content, and soil type, strongly dominated over plant properties and the composition of polar root exudates of the primary metabolism. While plant species-specific selection of bacteria was minor, the RNA-based composition of active rhizosphere bacteria substantially differed between rhizosphere and bulk soil. Although other variables could additionally be responsible for the consistent enrichment of particular bacteria in the rhizosphere, distinct bacterial OTUs were linked to the presence of specific polar root exudates independent of individual plant species. Our study also identified numerous previously unknown taxa that are correlated with rhizosphere dynamics and hence represent suitable targets for future manipulations of the plant rhizobiome.


Subject(s)
Bacteria/isolation & purification , Grassland , Rhizosphere , Soil Microbiology , Bacteria/classification , Plant Roots/microbiology , Soil/chemistry
14.
Front Microbiol ; 9: 901, 2018.
Article in English | MEDLINE | ID: mdl-29867812

ABSTRACT

We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.

15.
Genome Biol Evol ; 9(12): 3297-3311, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29194520

ABSTRACT

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.


Subject(s)
Chromosomes, Bacterial , Evolution, Molecular , Genome, Bacterial , Genomics/methods , Rhodobacteraceae/genetics , Adaptation, Physiological , DNA, Bacterial , Phylogeny , Rhodobacteraceae/classification , Rhodobacteraceae/physiology , Synteny
16.
Annu Rev Microbiol ; 71: 711-730, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28731846

ABSTRACT

The cultivation of bacteria is highly biased toward a few phylogenetic groups. Many of the currently underexplored bacterial lineages likely have novel biosynthetic pathways and unknown biochemical features. New cultivation concepts have been developed based on an improved understanding of the ecology of previously not-cultured bacteria. Particularly successful were improved media that mimic the natural types and concentrations of substrates and nutrients, high-throughput cultivation techniques, and approaches that exploit biofilm formation and bacterial interactions. Metagenomics and single-cell genomics can reveal unknown metabolic features of not-yet-cultured bacteria and, if complemented by culture-independent physiological analyses, will help to target functional novelty more efficiently. However, numerous novel types of bacteria that were initially enriched subsequently escaped isolation. Future cultivation work will therefore need to focus on improved subcultivation, purification, and preservation techniques to recover and utilize a larger fraction of microbial diversity.


Subject(s)
Bacteria/growth & development , Bacteria/isolation & purification , Bacteriological Techniques/methods , Culture Media/chemistry
17.
Environ Microbiol ; 19(8): 3310-3322, 2017 08.
Article in English | MEDLINE | ID: mdl-28631411

ABSTRACT

The decomposition of dead mammalian tissue involves a complex temporal succession of epinecrotic bacteria. Microbial activity may release different cadaveric volatile organic compounds which in turn attract other key players of carcass decomposition such as scavenger insects. To elucidate the dynamics and potential functions of epinecrotic bacteria on carcasses, we monitored bacterial communities developing on still-born piglets incubated in different forest ecosystems by combining high-throughput Illumina 16S rRNA sequencing with gas chromatography-mass spectrometry of volatiles. Our results show that the community structure of epinecrotic bacteria and the types of cadaveric volatile compounds released over the time course of decomposition are driven by deterministic rather than stochastic processes. Individual cadaveric volatile organic compounds were correlated with specific taxa during the first stages of decomposition which are dominated by bacteria. Through best-fitting multiple linear regression models, the synthesis of acetic acid, indole and phenol could be linked to the activity of Enterobacteriaceae, Tissierellaceae and Xanthomonadaceae, respectively. These conclusions are also commensurate with the metabolism described for the dominant taxa identified for these families. The predictable nature of in situ synthesis of cadaveric volatile organic compounds by epinecrotic bacteria provides a new basis for future chemical ecology and forensic studies.


Subject(s)
Autolysis/metabolism , Bacteria/metabolism , Cadaver , Insecta/metabolism , Necrosis/metabolism , Animals , Bacteria/classification , Gas Chromatography-Mass Spectrometry , Humans , Pheromones , RNA, Ribosomal, 16S/genetics , Sus scrofa/metabolism , Swine/metabolism , Volatile Organic Compounds/metabolism
18.
PLoS One ; 12(3): e0173765, 2017.
Article in English | MEDLINE | ID: mdl-28288199

ABSTRACT

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.


Subject(s)
Microbial Consortia/genetics , Models, Theoretical , Soil Microbiology , Base Sequence , Ecosystem , Germany , Hydrogen-Ion Concentration , Microbial Consortia/physiology , Models, Statistical , Random Allocation , Soil/chemistry
19.
Nature ; 540(7632): 266-269, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27919075

ABSTRACT

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in ß-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing ß-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on ß-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in ß-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the ß-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Subject(s)
Agriculture , Biodiversity , Grassland , Human Activities , Animals , Arthropods , Birds , Bryopsida , Chiroptera , Conservation of Natural Resources , Datasets as Topic , Food Chain , Fungi , Germany , Lichens , Plants , Soil Microbiology , Species Specificity
20.
Nature ; 536(7617): 456-9, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27533038

ABSTRACT

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Subject(s)
Biodiversity , Food Chain , Animals , Biomass , Germany , Grassland , Herbivory , Insecta , Microbiology , Models, Biological , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...