Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Hum Genet ; 99(6): 1229-1244, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27817865

ABSTRACT

Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.


Subject(s)
Dystonic Disorders/genetics , Fatty Acids/biosynthesis , Mitochondria/metabolism , Mutation , Optic Atrophy/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Basal Ganglia/metabolism , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts , Genetic Complementation Test , Humans , Infant , Male , Mitochondrial Diseases/genetics , Models, Molecular , Mutation, Missense/genetics , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pedigree , RNA Splice Sites/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Cell Metab ; 14(3): 428-34, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21907147

ABSTRACT

The metazoan mitochondrial translation machinery is unusual in having a single tRNA(Met) that fulfills the dual role of the initiator and elongator tRNA(Met). A portion of the Met-tRNA(Met) pool is formylated by mitochondrial methionyl-tRNA formyltransferase (MTFMT) to generate N-formylmethionine-tRNA(Met) (fMet-tRNA(met)), which is used for translation initiation; however, the requirement of formylation for initiation in human mitochondria is still under debate. Using targeted sequencing of the mtDNA and nuclear exons encoding the mitochondrial proteome (MitoExome), we identified compound heterozygous mutations in MTFMT in two unrelated children presenting with Leigh syndrome and combined OXPHOS deficiency. Patient fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of MTFMT. Furthermore, patient fibroblasts have dramatically reduced fMet-tRNA(Met) levels and an abnormal formylation profile of mitochondrially translated COX1. Our findings demonstrate that MTFMT is critical for efficient human mitochondrial translation and reveal a human disorder of Met-tRNA(Met) formylation.


Subject(s)
Cyclooxygenase 1/metabolism , DNA, Mitochondrial/chemistry , Fibroblasts/metabolism , Leigh Disease/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Biosynthesis , RNA, Transfer, Met/metabolism , Cells, Cultured , Child , Cyclooxygenase 1/genetics , DNA, Mitochondrial/genetics , Fibroblasts/pathology , Heterozygote , Humans , Hydroxymethyl and Formyl Transferases , Immunoblotting , Leigh Disease/metabolism , Leigh Disease/pathology , Lentivirus , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation , Protein Biosynthesis/genetics , Sequence Analysis, DNA , Transduction, Genetic , Virion
SELECTION OF CITATIONS
SEARCH DETAIL