Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Planta Med ; 87(12-13): 1045-1060, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34530481

ABSTRACT

In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.


Subject(s)
Ageratum , Computer Simulation , Escherichia coli , Microbial Sensitivity Tests , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Retrospective Studies , Staphylococcus aureus
2.
J Ethnopharmacol ; 231: 125-140, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30395977

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Species of Aspidosperma are known popularly as "peroba, guatambu, carapanaúba, pau-pereiro" and "quina". The genus can be found in the Americas, mainly between Mexico and Argentina. Many species of Aspidosperma are used by the population in treating cardiovascular diseases, malaria, fever, diabetes and rheumatism. The phytochemical aspects of the species of the genus Aspidosperma have been studied extensively. The monoterpene indole alkaloids are the main secondary metabolites in Aspidosperma species, and about 250 of them have been isolated showing a considerable structural diversity. Several of them have showed some important pharmacological activities. Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat diabetes mellitus, hypercholesterolemia. The pharmacological activities of both species have been investigated and the biological properties described can be related to their isolated indole alkaloids. However, more pharmacological studies are needed in order to justify the use of these species in folk medicine. In this review, we present reports mainly focused on chemical and biological studies and their relationship with the ethnopharmacological use of both Aspidosperma species. AIM OF THE STUDY: The aim of this review is to present their ethnopharmacological use as correlated to their biological activities as described for the extracts and isolated compounds from Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. In addition, some aspects related to the biosynthetic pathways are discussed, also NMR assignments and some synthesis information about indole alkaloids from both Aspidosperma species are included. MATERIAL AND METHODS: The bibliographic search was made in theses and dissertations using some databases such as NDLTD (Networked Digital Library of Theses and Dissertations), OATD (Open Access Theses and Dissertations) and Google Scholar. More data were gathered from books, Brazilian journals and articles available on electronic databases such as, Google Scholar, PubChem, Scifinder, Web of Science, SciELO, PubMed and Science Direct. Additionally, the Google Patents and Espacenet Patent Search (EPO) were also consulted. The keywords Aspidosperma, A. subincanum, A. tomentosum, indole alkaloids were used in the research. The languages were restricted to Portuguese, English and Spanish and references were selected according to their relevance. RESULTS: A. subincanum Mart. and A. tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat a few diseases. Extracts and isolated compounds of both species have shown antitumor and antimalarial activities. The antitumor activity of isolated compounds has been extensively studied. However, the antiplasmodial activity needs to be investigated further as well as the anti-inflammatory, anti-hyperlipidemic and anorexigenic activities. From A. subincanum twenty-one indole alkaloids were isolated and some of them have been extensively studied. From the leaves and bark of A. tomentosum four alkaloids and one flavonoid were isolated. Furthermore, CG-MS analysis of seeds, branches, leaves and arils identified nine indole alkaloids. Stemmadenine has been proposed as a precursor of indole alkaloids obtained from some species of Aspidosperma. Many of the biosynthetic steps have been characterized at the enzymatic level and appropriate genes have been identified, however, other steps have yet to be investigated and they are still controversial. Some isolated alkaloids from A. subincanum and A. tomentosum were identified only by mass spectrometry. In many cases, their NMR data was either not available or was incomplete. The described meta-analysis of the available NMR data revealed that the chemical shifts belonging to the indole ring might be used to characterize this class of alkaloids within complex matrices such as plant extracts. The biological activities and the structural complexity of these compounds have stimulated the interest of many groups into their synthesis. In this review, some information about the synthesis of indole alkaloids and their derivatives was presented. CONCLUSIONS: A. subincanum and A. tomentosum are used by the population of Brazil to treat many diseases. A few biological activities described for the extracts and isolated compounds of both species are in agreement with the ethnopharmacological use for others species of Aspidosperma, such as, antimalarial, the treatment of diabetes and other illnesses. These species are sources of leading compounds which can be used for developing new drugs. In addition, other biological activities reported and suggested by ethnopharmacological data have yet to be investigated and could be an interesting area in the search for new bioactive compounds.


Subject(s)
Aspidosperma , Phytotherapy , Alkaloids/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Animals , Aspidosperma/chemistry , Aspidosperma/metabolism , Brazil , Ethnobotany , Humans , Medicine, Traditional , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
J Ethnopharmacol ; 232: 155-164, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30580025

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis is a parasitic disease that affects people all over the world. The number of cases of leishmaniasis is increasing and the drugs used for its treatment are toxic and not always effective. The recognition of the global nature of this disease and its direct or indirect effects on health economics and actions focuses attention on the development of new therapeutic options. In Brazil, this parasitic disease is endemic in many regions. The plants used by the population against leishmaniasis can be good starting points in the search of new lead compounds for antileishmanial drugs. AIM OF THE STUDY: The aim of the present study was to investigate the antileishmanial activity of extracts from leaves and stems of seven Brazilian plant species used by the population to treat leishmaniasis, and symptoms that might be related to Leishmania infections. MATERIALS AND METHODS: Twenty two extracts from seven plants belonging to five different botanical families were prepared by different methods and evaluated for their effect on the viability of promastigote forms of Leishmania infantum (MHOM/BR/1967/BH46) using the resazurin-based colorimetric assay. The extracts were considered active when they inhibited the growth of promastigotes in a percentage greater than or equal to 50% at 100 and 200 µg/mL. The active samples were further investigated to determine IC50, CC50 and SI values against promastigote forms of L. infantum. The active and non-cytotoxic extracts (SI> 10) were evaluated against amastigote forms of L. infantum. In addition, the active extracts against the amastigote forms were analyzed by TLC and HPLC, while the EtOAc extract of stems from Aspidosperma tomentosum was also evaluated by GC/MS. RESULTS: Among the twenty two extracts evaluated, two were considered active against L. infantum. The EtOH extract of leaves from Dyospiros hispida (IC50 55.48 ±â€¯2.77 µg/mL and IC50 80.63 ±â€¯13.17 µg/mL, respectively) and the EtOAc extract of stems from Aspidosperma tomentosum (IC50 9.70 ±â€¯2.82 µg/mL and IC50 15.88 ±â€¯1.53 µg/mL, respectively) inhibited significantly the growth of promastigote and amastigote forms of L. infantum. Some extracts, although active in the initial screening, were considered toxic since the SI was lower than 10. In TLC and HPLC analysis the leaf extract of Dyospiros hispida showed the presence of anthraquinones, terpenes and saponins, and in the EtOAc extract of stems from Aspidosperma tomentosum alkaloids and flavonoids were detected. In addition, in the latter extract the indole alkaloids uleine and dasycarpidone could be identified by GC/MS. CONCLUSIONS: The ethnopharmacological data of Aspidosperma tomentosum and Dyospiros hispida in part support the results found in the biological models used. Extracts of Aspidosperma tomentosum and Dyospiros hispida presented promising results against L. infantum.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Magnoliopsida , Plant Extracts/pharmacology , Animals , Antiprotozoal Agents/chemistry , Brazil , Cell Line, Tumor , Cell Survival/drug effects , Leishmania infantum/growth & development , Magnoliopsida/chemistry , Mice , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry
4.
Mem. Inst. Oswaldo Cruz ; 95(3): 367-73, May-Jun. 2000. tab
Article in English | LILACS | ID: lil-258191

ABSTRACT

In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado") that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a) molluscicidal activity against Biomphalaria glabrata, (b) toxicity to brine shrimp (Artemia salina L.), (c) antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d) antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.


Subject(s)
Animals , Bacterial Infections/prevention & control , Mycoses/prevention & control , Parasitic Diseases/prevention & control , Plants, Medicinal/adverse effects , Artemia/drug effects , Biomphalaria/drug effects , Brazil , Cladosporium/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...