Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ann Hematol ; 101(5): 999-1007, 2022 May.
Article in English | MEDLINE | ID: mdl-35182190

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hematological disorder caused by the expansion of a hematopoietic clone harboring a somatic genetic variant in the PIG-A gene translating into a wide spectrum of clinical and laboratory changes, from intravascular hemolysis, thrombosis, and bone marrow failure to subclinical presentation. In this study, we retrospectively analyzed 87 consecutive cases (39 women; median follow-up, 18 months; range, 0-151 months) in whom a PNH clone was detected by flow cytometry between 2006 and 2019 seen at a single Brazilian referral center. The median age at diagnosis was 29 years (range, 8 to 83 years); 29 patients (33%) were initially classified as PNH/bone marrow failure, 13 (15%) as classic PNH, and 45 (52%) as subclinical PNH. The median overall survival (OS) of the entire cohort was not reached during follow-up, without significant differences between groups. At diagnosis, the median PNH clone size was 2.8% (range, 0 to 65%) in erythrocytes and 5.4% (range, 0 to 80%) in neutrophils. Fourteen patients experienced clone expansion during follow-up; in other 14 patients the clone disappeared, and in 18 patients it remained stable throughout the follow-up. A subclinical PNH clone was detected in three telomeropathy patients at diagnosis, but it was persistent and confirmed by DNA sequencing in only one case. In conclusion, PNH presentation was variable, and most patients had subclinical disease or associated with marrow failure and did not require specific anticomplement therapy. Clone size was stable or even disappeared in most cases.


Subject(s)
Anemia, Aplastic , Hemoglobinuria, Paroxysmal , Anemia, Aplastic/diagnosis , Bone Marrow Failure Disorders , Brazil/epidemiology , Female , Hemoglobinuria, Paroxysmal/diagnosis , Hemoglobinuria, Paroxysmal/genetics , Humans , Referral and Consultation , Retrospective Studies
3.
Clin Immunol ; 220: 108598, 2020 11.
Article in English | MEDLINE | ID: mdl-32961333

ABSTRACT

Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.


Subject(s)
Betacoronavirus/pathogenicity , Complement C3/antagonists & inhibitors , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , Cohort Studies , Complement Activation/drug effects , Complement C3/genetics , Complement C3/immunology , Complement C5/genetics , Complement C5/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Extracellular Traps/drug effects , Female , Gene Expression , Humans , Interleukin-6/metabolism , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/virology , Pandemics , Peptides, Cyclic/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...