Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neuroscience ; 551: 153-165, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821242

ABSTRACT

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.

2.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791103

ABSTRACT

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Subject(s)
Diet, High-Fat , Fatty Liver , Insulin Resistance , Ovariectomy , Resistance Training , Animals , Female , Ovariectomy/adverse effects , Diet, High-Fat/adverse effects , Mice , Fatty Liver/metabolism , Fatty Liver/prevention & control , Physical Conditioning, Animal , Oxidative Stress , Liver/metabolism , Mice, Inbred C57BL , Body Weight , Lipogenesis
3.
Nat Commun ; 14(1): 1725, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977675

ABSTRACT

Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.


Subject(s)
Carotid Body , Heart Failure , Rats , Male , Animals , Receptors, Purinergic P2X3 , Chemoreceptor Cells/physiology , Respiration
4.
Am J Physiol Heart Circ Physiol ; 323(2): H322-H335, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35714175

ABSTRACT

Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T-cell activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cell-linked effector mechanisms. Female (8 wk old) C57BL/6J mice received testosterone (48 mg/kg/wk) for 8 wk. Male mice were used for phenotypical comparisons. The hormone treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 wk, testosterone decreased endothelium-dependent vasodilation and increased peripheral Th17 cells. After 24 wk, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild-type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune-cell balance are important in the GAHT in transmasculine people.NEW & NOTEWORTHY Sex hormone-induced cardiovascular events are important undesirable effects in transgender people under GAHT. Studies addressing the cardiovascular impact of GAHT will certainly contribute to improve healthcare services offered to this population. Our study showing that vascular dysfunction, via Th17 cell-related mechanisms, precedes increased blood pressure induced by testosterone in a GAHT mouse model, reveals potential mechanisms involved in GAHT-related cardiovascular events and may provide new markers/targets for clinical practices in transmasculine people.


Subject(s)
Cardiovascular Diseases , Testosterone , Animals , Cardiovascular Diseases/drug therapy , Disease Models, Animal , Female , Gonadal Steroid Hormones , Homeodomain Proteins , Humans , Male , Mice , Mice, Inbred C57BL , Th17 Cells
5.
Nat Commun ; 11(1): 5433, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116136

ABSTRACT

Scorpion envenomation is a leading cause of morbidity and mortality among accidents caused by venomous animals. Major clinical manifestations that precede death after scorpion envenomation include heart failure and pulmonary edema. Here, we demonstrate that cardiac dysfunction and fatal outcomes caused by lethal scorpion envenomation in mice are mediated by a neuro-immune interaction linking IL-1 receptor signaling, prostaglandin E2, and acetylcholine release. IL-1R deficiency, the treatment with a high dose of dexamethasone or blockage of parasympathetic signaling using atropine or vagotomy, abolished heart failure and mortality of envenomed mice. Therefore, we propose the use of dexamethasone administration very early after envenomation, even before antiserum, to inhibit the production of inflammatory mediators and acetylcholine release, and to reduce the risk of death.


Subject(s)
Acetylcholine/metabolism , Dinoprostone/biosynthesis , Heart Failure/etiology , Receptors, Interleukin-1 Type I/metabolism , Scorpion Venoms/toxicity , Animals , Antivenins/administration & dosage , Atropine/pharmacology , Dexamethasone/administration & dosage , Disease Models, Animal , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Neuroimmunomodulation/drug effects , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Scorpion Stings/complications , Scorpions , Signal Transduction , Vagotomy
6.
Exp Physiol ; 105(8): 1349-1359, 2020 08.
Article in English | MEDLINE | ID: mdl-32362040

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the carotid bodies' contribution to active inspiratory and expiratory response to exercise? What is the main finding and its importance? Removal of the carotid bodies reduced the active inspiratory and expiratory responses of diaphragm and abdominal internal oblique muscles, respectively, to high-intensity, but not to low-intensity, exercise in rats. Removal of the carotid bodies increased PaCO2 and decreased arterial pH in response to high-intensity exercise. The carotid bodies contribute to the inspiratory and expiratory adjustments to high-intensity exercise in rats. ABSTRACT: Exercise involves the interaction of several physiological processes, in which adjustments in pulmonary ventilation occur in response to increased O2 consumption, CO2 production and altered acid-base equilibrium. The peripheral chemoreceptors (carotid bodies; CBs) are sensitive to changes in the chemical composition of arterial blood, and their activation induces active inspiratory and expiratory responses. Herein, we tested the hypothesis that the CBs contribute to the active inspiratory and expiratory responses to exercise in rats. We performed electromyographic recordings of the diaphragm (DiaEMG ) and abdominal internal oblique (AbdEMG ) muscles in rats before and after bilateral removal of the CBs (CBX) during constant-load low-intensity and high-intensity progressive treadmill exercise. We also collected arterial blood samples for gaseous and pH analyses. Similar increases in DiaEMG frequency in both experimental conditions (before and after CBX) during low-intensity exercise were observed, without significant changes in the DiaEMG amplitude. During high-intensity exercise, lower responses of both DiaEMG frequency and DiaEMG amplitude were observed in rats after CBX. The AbdEMG phasic active expiratory response was not significant either before or after CBX during low-intensity exercise. However, CBX reduced the phasic active expiratory responses during high-intensity exercise. The blunted responses of inspiratory and expiratory adjustments to high-intensity exercise after CBX were associated with higher PaCO2 levels and lower arterial pH values. Our data show that in rats the CBs do not participate in the inspiratory and expiratory responses to low-intensity exercise, but are involved in the respiratory compensation against the metabolic acidosis induced by high-intensity exercise.


Subject(s)
Carotid Body/physiology , Exhalation/physiology , Inhalation/physiology , Physical Conditioning, Animal/physiology , Animals , Diaphragm/physiology , Electrodes, Implanted , Electromyography , Pulmonary Ventilation , Rats , Rats, Wistar
7.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G342-G348, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31314548

ABSTRACT

There is a body of evidence that supports the notion that gut dysbiosis plays a role in the pathogenesis of cardiovascular diseases. Decreased cardiac function can reduce intestinal perfusion, resulting in morphological alterations, which may contribute to changes in the gut microbiota composition in patients with heart failure (HF). In this regard, a germane question is whether changes in gut microbiota composition are a cause or consequence of the cardiovascular disturbance. We tested the hypothesis that the development of HF, after myocardial infarction, would cause gut dysbiosis. Fecal samples were collected before and 6 wk after myocardial infarction or sham surgery. Gut microbiota were characterized by sequencing the bacterial 16S ribosomal DNA. The composition of bacterial communities in the fecal samples was evaluated by calculating three major ecological parameters: 1) the Chao 1 richness, 2) the Pielou evenness, and 3) the Shannon index. None of these indices was changed in either sham or HF rats. The Firmicutes/Bacteroidetes ratio was not altered in HF rats. The number of species in each phylum was also not different between sham and HF rats. ß-Diversity analysis showed that the composition of gut microbiota was not changed with the development of HF. Bacterial genera were grouped according to their major metabolic end-products (acetate, butyrate, and lactate), but no differences were observed in HF rats. Therefore, we conclude that HF induced by myocardial infarction does not affect gut microbiota composition, at least in rats, indicating that the dysbiosis observed in patients with HF may precede cardiovascular disturbance.NEW & NOTEWORTHY Our study demonstrated that, following myocardial infarction in rats, heart failure (HF) development did not affect the intestinal microbiota despite distinct differences reported in the gut microbiota of humans with HF. Our finding is consistent with the notion that dysbiosis observed in patients with HF may precede cardiovascular dysfunction and therefore offers potential for early diagnosis and treatment.


Subject(s)
Dysbiosis/microbiology , Feces/microbiology , Heart Failure/physiopathology , Intestines/microbiology , Myocardial Infarction/microbiology , Animals , Gastrointestinal Microbiome/genetics , Heart Failure/complications , Intestines/pathology , Male , Microbiota/drug effects , Rats, Wistar
8.
Sci Rep ; 7(1): 11903, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928410

ABSTRACT

The renin-angiotensin system (RAS) plays a key role in the control of vasoconstriction as well as sodium and fluid retention mediated mainly by angiotensin (Ang) II acting at the AT1 receptor (AT1R). Ang-(1-7) is another RAS peptide, identified as the endogenous ligand of the Mas receptor and known to counterbalance many of the deleterious effects of AngII. AT1R signaling triggered by ß-arrestin-biased agonists has been associated to cardioprotection. Because position 8 in AngII is important for G protein activation, we hypothesized that Ang-(1-7) could be an endogenous ß-arrestin-biased agonist of the AT1R. Here we show that Ang-(1-7) binds to the AT1R without activating Gq, but triggering ß-arrestins 1 and 2 recruitment and activation. Using an in vivo model of cardiac hypertrophy, we show that Ang-(1-7) significantly attenuates heart hypertrophy by reducing both heart weight and ventricular wall thickness and the increased end-diastolic pressure. Whereas neither the single blockade of AT1 or Mas receptors with their respective antagonists prevented the cardioprotective action of Ang1-7, combination of the two antagonists partially impaired the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) mediates at least part of its cardioprotective effects by acting as an endogenous ß-arrestin-biased agonist at the AT1R.


Subject(s)
Angiotensin I/therapeutic use , Cardiomegaly/drug therapy , Cardiotonic Agents/therapeutic use , Peptide Fragments/therapeutic use , Receptor, Angiotensin, Type 1/metabolism , beta-Arrestins/agonists , Angiotensin I/metabolism , Animals , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Cardiotonic Agents/metabolism , Diastole/drug effects , HEK293 Cells , Heart/drug effects , Heart/physiopathology , Humans , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Peptide Fragments/metabolism , Phosphorylation , Rats , Rats, Inbred WF , Signal Transduction/drug effects , beta-Arrestins/metabolism
9.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R612-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26843582

ABSTRACT

Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective ß1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.


Subject(s)
Aorta/innervation , Baroreflex , Blood Pressure , Heart Failure/physiopathology , Heart Failure/therapy , Transcutaneous Electric Nerve Stimulation/methods , Animals , Electric Stimulation Therapy/methods , Heart Failure/diagnosis , Heart Rate , Male , Rats , Rats, Wistar , Treatment Outcome
10.
Am J Hypertens ; 28(10): 1201-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25758777

ABSTRACT

BACKGROUND: It is hypothesized that chronic increase of availability of acetylcholine, resulting from the effect of antiacetylcholinesterases, may prevent autonomic imbalance and reduce inflammation yielding benefic effects for cardiovascular disorders in hypertension. The effect of long-term administration of antiacetylcholinesterase agents with central and/or peripheral action, i.e., donepezil and pyridostigmine, were investigated on arterial pressure (AP), sympathovagal balance, plasma cytokine levels, and cardiac remodeling in spontaneously hypertensive rats (SHR). METHODS: Chronic treatment with donepezil or pyridostigmine started before the onset of hypertension. AP was measured by plethysmography every 4 weeks. At the end of 16 weeks of treatment, methylatropine was used to evaluate the cardiac vagal tone; AP and pulse interval (PI) variability were also evaluated followed by plasma and heart collection for analysis. RESULTS: Pyridostigmine, which does not cross the blood-brain barrier, increased cardiac vagal tone, and reduced cardiomyocyte diameter and collagen density, but did not affect the AP and plasma cytokine levels. Donepezil, which crosses the blood-brain barrier, attenuated the development of hypertension, increased cardiac vagal tone, and improved AP and PI variability. Likewise, donepezil reduced the plasma levels of tumor necrosis factor-α, interleukin 6, and interferon γ, besides reducing cardiomyocyte diameter and collagen density. CONCLUSIONS: Donepezil attenuated the development of hypertension in SHR probably involving antiinflammatory effects, indicating that acetylcholinesterase inhibition yields benefic effects for antihypertensive therapy.


Subject(s)
Cholinesterase Inhibitors/therapeutic use , Hypertension/prevention & control , Indans/therapeutic use , Inflammation/prevention & control , Piperidines/therapeutic use , Pyridostigmine Bromide/therapeutic use , Animals , Blood Pressure , Cholinesterase Inhibitors/pharmacology , Cytokines/blood , Donepezil , Drug Evaluation, Preclinical , Heart/drug effects , Heart Rate , Indans/pharmacology , Male , Piperidines/pharmacology , Pyridostigmine Bromide/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Ventricular Remodeling/drug effects
11.
Am J Physiol Regul Integr Comp Physiol ; 305(8): R908-16, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23948774

ABSTRACT

Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Heart Failure/drug therapy , Heart/drug effects , Parasympathetic Nervous System/drug effects , Pyridostigmine Bromide/pharmacology , Ventricular Dysfunction/prevention & control , Animals , Heart/physiopathology , Heart Failure/physiopathology , Heart Rate/drug effects , Heart Rate/physiology , Male , Parasympathetic Nervous System/physiopathology , Pyridostigmine Bromide/therapeutic use , Rats , Rats, Wistar , Vagus Nerve/physiopathology , Ventricular Dysfunction/drug therapy , Ventricular Dysfunction/physiopathology
12.
Int J Mol Sci ; 14(4): 7180-92, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23538844

ABSTRACT

The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109) growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%-81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals.


Subject(s)
Adaptation, Physiological/drug effects , Cadmium/isolation & purification , Cadmium/toxicity , Cunninghamella/metabolism , Polyphosphates/metabolism , Biodegradation, Environmental/drug effects , Cunninghamella/drug effects , Cunninghamella/growth & development , Cunninghamella/ultrastructure , Hyphae/drug effects , Hyphae/growth & development , Hyphae/ultrastructure , Intracellular Space/drug effects , Intracellular Space/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...