Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Elite Ed) ; 15(2): 13, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37369573

ABSTRACT

Microbes are traditionally regarded as planktonic organisms, individual cells that live independently from each other. Although this is true, microbes in nature mostly live within large multi-species communities forming complex ecosystems. In these communities, microbial cells are held together and organised spatially by an extracellular matrix (ECM). Unlike the ECM from the tissues of higher eukaryotes, microbial ECM, mostly that of yeasts, is still poorly studied. However, microbial biofilms are a serious cause for concern, for being responsible for the development of nosocomial infections by pharmacological drugs-resistant strains of pathogens, or for critically threatening plant health and food security under climate change. Understanding the organization and behaviour of cells in biofilms or other communities is therefore of extreme importance. Within colonies or biofilms, extremely large numbers of individual microbial cells adhere to inert surfaces or living tissues, differentiate, die or multiply and invade adjacent space, often following a 3D architectural programme genetically determined. For all this, cells depend on the production and secretion of ECM, which might, as in higher eukaryotes, actively participate in the regulation of the group behaviour. This work presents an overview of the state-of-the-art on the composition and structure of the ECM produced by yeasts, and the inherent physicochemical properties so often undermined, as well as the available information on its production and delivery pathways.


Subject(s)
Biofilms , Ecosystem , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Biology
2.
Cerebellum ; 14(5): 516-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25917213

ABSTRACT

α-Synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-Synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1), while it was not detected in VGluT2-positive climbing fibers. α-Synuclein was particularly enriched in lobules IX and X, a region known to contain a high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double-labeled cerebellar sections with antibodies to α-synuclein and UBC-type-specific markers (calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs) and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed a dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-Synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes.


Subject(s)
Cerebellum/cytology , Cerebellum/metabolism , Neurons/metabolism , Presynaptic Terminals/physiology , Vesicular Glutamate Transport Protein 1/metabolism , alpha-Synuclein/metabolism , Animals , Female , Gene Expression Regulation/genetics , Glutamate Decarboxylase/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Heat-Shock Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Molecular Chaperones , Mutation/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Organ Culture Techniques , TRPC Cation Channels/genetics , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL