Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Lasers Med Sci ; 39(1): 109, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649643

ABSTRACT

Necrosis is common in skin flap surgeries. Photobiomodulation, a noninvasive and effective technique, holds the potential to enhance microcirculation and neovascularization. As such, it has emerged as a viable approach for mitigating the occurrence of skin flap necrosis. The aim of this systematic review was to examine the scientific literature considering the use of photobiomodulation to increase skin-flap viability. The preferred reporting items for systematic reviews and meta-analyses (PRISMA), was used to conducted systematic literature search in the databases PubMed, SCOPUS, Elsevier and, Scielo on June 2023. Included studies investigated skin-flap necrosis employing PBMT irradiation as a treatment and, at least one quantitative measure of skin-flap necrosis in any animal model. Twenty-five studies were selected from 54 original articles that addressed PBMT with low-level laser (LLL) or light-emitting diode (LED) in agreement with the qualifying requirements. Laser parameters varied markedly across studies. In the selected studies, the low-level laser in the visible red spectrum was the most frequently utilized PBMT, although the LED PBMT showed a similar improvement in skin-flap necrosis. Ninety percent of the studies assessing the outcomes of the effects of PBMT reported smaller areas of necrosis in skin flap. Studies have consistently demonstrated the ability of PBMT to improve skin flap viability in animal models. Evidence suggests that PBMT, through enhancing angiogenesis, vascular density, mast cells, and VEGF, is an effective therapy for decrease necrotic tissue in skin flap surgery.


Subject(s)
Low-Level Light Therapy , Necrosis , Surgical Flaps , Animals , Low-Level Light Therapy/methods , Skin/radiation effects , Skin/blood supply , Surgical Flaps/blood supply
2.
Int J Obes (Lond) ; 48(2): 284-287, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985745

ABSTRACT

Fructose overconsumption is a worldwide trend, and it has been found to cause metabolic disorders in parents and their offspring. Additionally, metabolic syndrome has been closely associated with increased cardiovascular risk. In this study, we hypothesized that the chronic fructose consumption by parents could trigger autonomic dysfunction and cardiometabolic disorders in their offspring. Wistar rats undergo an intake of 10% of fructose in drinking water or regular water for 60 days before mating. Their offspring, control (C) and fructose (F) groups, were evaluated 30 days after weaning. Lower birth weight, increased levels of blood triglycerides and insulin resistance were observed in F compared to C group. The offspring of the fructose parents showed increased mean arterial pressure (C: 104 ± 1 vs. F: 111 ± 2 mmHg) and baroreflex sensitivity impairment, characterized by reduced bradycardic (C: -1.6 ± 0.06 vs. F: -1.3 ± 0.06 bpm/mmHg) and tachycardic responses (C: -4.0 ± 0.1 vs. F: -3.1 ± 0.2 bpm/mmHg). Finally, a higher baroreflex-induced tachycardia was associated with lower insulin tolerance (r = -0.55, P < 0.03) and higher systolic arterial pressure (r = 0.54, P < 0.02). In conclusion, our findings indicate that the excessive consumption of fructose by parents is associated with early autonomic, cardiovascular, and metabolic derangement in the offspring, favoring an increased cardiometabolic risk when they reach adulthood.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Rats , Animals , Arterial Pressure , Baroreflex , Fructose/adverse effects , Rats, Wistar , Blood Glucose/metabolism , Blood Pressure
SELECTION OF CITATIONS
SEARCH DETAIL