Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 11(36): 8697-8716, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37646077

ABSTRACT

Currently, multidrug-resistant (MDR) infections are one of the most important threats, driving the search for new antimicrobial compounds. Cationic peptide antibiotics (CPAs) and ceragenins (CSAs) contain in their structures cationic groups and adopt a facially amphiphilic conformation, conferring the ability to permeate the membranes of bacteria and fungi. Keeping these features in mind, an amine steroid, DOCA-NH2, was found to be active against reference strains and MDR isolates of Gram-positive Enterococcus faecalis and Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa. The compound was active against all the tested microorganisms, having bactericidal and fungicidal activity, displaying minimal inhibitory concentrations (MICs) between 16 and 128 µg mL-1. No synergy with clinically relevant antibacterial drugs was found. However, the compound was able to completely inhibit the biofilm formation of bacteria exposed to the MIC of the compound. For E. coli and E. faecalis, inhibition of biofilm formation occurred at half the MIC. Besides, DOCA-NH2 inhibited the dimorphic transition of Candida albicans at concentrations 4 times lower than the MIC, and can reduce the microorganism virulence and biofilm formation was significantly reduced at both MIC and half the MIC. Polydimethylsiloxane-based coatings containing DOCA-NH2 (0.5, 1.0, and 1.5 wt%) were prepared and tested against the E. coli biofilm formation under hydrodynamic conditions similar to those prevailing in ureteral stents. A biofilm reduction of approximately 80% was achieved when compared to the control.


Subject(s)
Anti-Infective Agents , Desoxycorticosterone Acetate , Urinary Tract Infections , Humans , Escherichia coli , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/drug therapy , Amines , Biofilms , Cations
2.
Environ Sci Pollut Res Int ; 30(26): 68987-68997, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37131003

ABSTRACT

Marine biofouling pollution is a process that impacts ecosystems and the global economy. On the other hand, traditional antifouling (AF) marine coatings release persistent and toxic biocides that accumulate in sediments and aquatic organisms. To understand the putative impact on marine ecosystems of recently described and patented AF xanthones (xanthones 1 and 2), able to inhibit mussel settlement without acting as biocides, several in silico environmental fate predictions (bioaccumulation, biodegradation, and soil absorption) were calculated in this work. Subsequently, a degradation assay using treated seawater at different temperatures and light exposures was conducted for a period of 2 months to calculate their half-life (DT50). Xanthone 2 was found to be non-persistent (DT50 < 60 days) at 50 µM, contrary to xanthone 1 (DT50 > 60 days). To evaluate the efficacy of both xanthones as AF agents, they were blended into four polymeric-based coating systems: polyurethane- and polydimethylsiloxane (PDMS)-based marine paints, as well as room-temperature-vulcanizing PDMS- and acrylic-based coatings. Despite their low water solubility, xanthones 1 and 2 demonstrated suitable leaching behaviors after 45 days. Overall, the generated xanthone-based coatings were able to decrease the attachment of the Mytilus galloprovincialis larvae after 40 h. This proof-of-concept and environmental impact evaluation will contribute to the search for truly environmental-friendly AF alternatives.


Subject(s)
Biofouling , Disinfectants , Biofouling/prevention & control , Ecosystem , Solubility , Seawater , Disinfectants/toxicity
3.
Mar Drugs ; 20(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135737

ABSTRACT

The development of marine-inspired compounds as non-toxic antifouling (AF) agents has been pursued in the last years. Sulfur is the third most common element in seawater. Sulfur is present in oxygenated seawater as sulfate anion (SO42-), which is the most stable combination of sulfur in seawater, and several promising AF secondary metabolites with sulfate groups have been described. However, sulfated compounds proved to be an analytical challenge to quantify by HPLC. Taking these facts into consideration, this work presents the development and validation of a method for the quantification of gallic acid persulfate (GAP) in seawater and ultrapure water matrix, based on hydrophilic interaction liquid chromatography (HILIC). This method was used to evaluate GAP stability following several abiotic and biotic degradation assays, and to quantify its release in seawater from room-temperature-vulcanizing polydimethylsiloxane commercial coating. GAP was very stable in several water matrices, even at different pH values and in the presence/absence of marine microorganisms and presented a leaching value lower than 0.5%. This work discloses HILIC as an analytical method to overcome the difficulties in quantifying sulfated compounds in water matrices and highlights the potential of GAP as a promising long-lasting coating.


Subject(s)
Biofouling , Biofouling/prevention & control , Dimethylpolysiloxanes , Gallic Acid , Seawater/chemistry , Sulfates , Sulfur , Water
4.
Mar Drugs ; 20(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36005510

ABSTRACT

The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates the further settlement of macrofoulers. Anti-biofilm properties of a synthetic polyphenolic compound, with previously described anti-settlement activity against macrofoulers, were explored in this work. In solution this new compound was able to prevent biofilm formation and reduce a pre-formed biofilm produced by the marine bacterium, Pseudoalteromonas tunicata. Then, this compound was applied to a marine coating and the formation of P. tunicata biofilms was assessed under hydrodynamic conditions to mimic the marine environment. For this purpose, polyurethane (PU)-based coating formulations containing 1 and 2 wt.% of the compound were prepared based on a prior developed methodology. The most effective formulation in reducing the biofilm cell number, biovolume, and thickness was the PU-based coating containing an aziridine-based crosslinker and 2 wt.% of the compound. To assess the marine ecotoxicity impact of this compound, its potential to disrupt endocrine processes was evaluated through the modulation of two nuclear receptors (NRs), peroxisome proliferator-activated receptor γ (PPARγ), and pregnane X receptor (PXR). Transcriptional activation of the selected NRs upon exposure to the polyphenolic compound (10 µM) was not observed, thus highlighting the eco-friendliness towards the addressed NRs of this new dual-acting anti-macro- and anti-microfouling agent towards the addressed NRs.


Subject(s)
Biofouling , Disinfectants , Biofilms , Biofouling/prevention & control
5.
Bioorg Chem ; 126: 105911, 2022 09.
Article in English | MEDLINE | ID: mdl-35661617

ABSTRACT

The addition of biocides to marine coatings has been the most used solution to avoid marine biofouling, however they are persistent, bioaccumulative, and toxic (PBT) to marine ecosystems. The development of natural products or Nature-inspired synthetic compounds to replace these harmfull biocides has been pursued as one of the most promising antifouling (AF) alternatives. Following a bioprospection strategy, we have previously reported the AF activity of gallic acid persulfate (1) against the settlement of Mytilus galloprovincialis larvae (EC50 = 18 µM and LC50/EC50 = 27) without exhibiting ecotoxicity to Artemia salina. In this work, a lead optimization strategy was applied to compound 1 in order to improve potency while maintaining a low ecotoxicity profile. In this direction, twenty-seven compounds were synthesized, from which eighteen were obtained for the first time. An AF screening was performed against the settlement of mussel M. galloprovincialis larvae and derivative 26, 2-(3,4,5-trihydroxybenzamido)ethan-1-aminium bromide, was found to be more potent (EC50 = 3 µM and LC50/EC50 = 73) than compound 1 and the biocide Econea® (EC50 = 4 µM). The potential impact on neurotransmission, and ecotoxicity against two non-target marine organisms was also evaluated. Marine polyurethane (PU)-based coatings containing compound 26 were prepared and lower adherence of mussel larvae was observed compared to compound 26 free PU-coatings. Studies concerning the leaching of compound 26 from the prepared coating were also conducted, and < 10% of this compound was detected after 45 days of submersion in water. Overall, we have optimized the potency against the settlement of mussels of our initial lead compound, not compromising the toxicity and compatibility with PU-based coatings.


Subject(s)
Biofouling , Disinfectants , Mytilus , Animals , Biofouling/prevention & control , Disinfectants/pharmacology , Ecosystem , Gallic Acid/pharmacology , Larva
6.
Data Brief ; 40: 107696, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34977290

ABSTRACT

The growing threat of emerging waterborne contaminants is a global concern, fuelled in part by the ineffectiveness of current remediation strategies. One of the most prominent remediation strategies is catalytic photodegradation, particularly with TiO2 nanoparticles (NPs), but its full utilization is hampered by using only UV radiation, which is scarce in sunlight. To fully benefit from the sunlight abundance, several efforts are focused on the tailoring of TiO2 to make it more active in visible (Vis) light. However, this target is yet to be met, sought for new developments. In a recent research paper entitled "Visible light-driven photodegradation of triclosan and antimicrobial activity against Legionella pneumophila with cobalt and nitrogen co-doped TiO2 anatase nanoparticles" [ 1 ], we investigated the co-doping potential of cobalt and nitrogen in TiO2 NPs for water decontamination, focusing on its application for the degradation of triclosan (TCS) under Vis LED light irradiation. Herein, the synthesis methodology for the preparation of doped TiO2 with nitrogen is described in detail, along with complementary data on the characterisation of all previously synthesised photocatalysts in the form of specific surface area determination (B.E.T. method) based on the obtained physisorption isotherms, X-ray photoelectron spectroscopy (XPS), and the automatic determination of bandgap energy through the diffuse reflectance spectra (DRS) analysis by using the GapExtractor© software. This dataset article also includes optimised photocatalytic reaction conditions, specifically conducted under monochromatic LED light irradiation. The employed LED irradiation conditions can support photocatalytic research in the field, since LED systems are costless and have a long-life span compared to most conventional UV-Vis systems. In addition, raw UV-Vis spectra and high-performance liquid chromatography (HPLC) chromatograms for monitoring the TCS degradation reaction are also included, as are powder X-ray diffractograms (XRD) of recycled doped-TiO2 photocatalysts, confirming the renewable efficiency of the synthesised photocatalysts to pursue green chemistry principles.

7.
Ecotoxicol Environ Saf ; 228: 112970, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34775347

ABSTRACT

The accumulation of marine biofouling on ship hulls causes material damage, the spread of invasive species, and, indirectly, an increase in full consumption and subsequent pollutant gas emissions. Most efficient antifouling (AF) strategies rely on the conventional release of persistent, bioaccumulative, and toxic biocides incorporated in marine coatings. A simple oxygenated xanthone, 3,4-dihydroxyxanthone (1), was previously reported as a promising AF agent toward the settlement of Mytilus galloprovincialis larvae, with a therapeutic ratio higher than the commercial biocide Econea®. In this work, a structure-AF activity relationship study, an evaluation of environmental fate, and an AF efficiency in marine coatings were performed with compound 1. Hydroxy or methoxy groups at 3 and 4 positions in compound 1 favored AF activity, and groups with higher steric hindrances were detrimental. Compound 1 demonstrated low water-solubility and a short half-life in natural seawater, contrary to Econea®. In silico environmental fate predictions showed that compound 1 does not bioaccumulate in organism tissues, in contrast to other current emerging biocides, has a moderate affinity for sediments and slow migrates to ground water. No toxicity was observed against Vibrio fischeri and Phaeodactylum tricornutum. Polyurethane-based marine coatings containing compound 1 prepared through an innovative non-release-strategy were as efficient as those containing Econea® with low releases to water after 45 days. This proof-of-concept helped to establish compound 1 as a promising eco-friendly AF agent.

8.
Environ Res ; 198: 111219, 2021 07.
Article in English | MEDLINE | ID: mdl-33965385

ABSTRACT

The control of marine biofouling has raised serious environmental concerns, thus the continuous release of toxic and persistent biocidal agents applied as anti-biofouling coatings have triggered the search for non-toxic strategies. However, most of them still lack rigorous evaluation of their ecotoxicity and antifouling effects under real scenarios and their correlation with simulated assays. In this work, the biocide releasing risk and ecotoxicity of a biocidal and foul-release polydimethylsiloxane (PDMS)-based marine coating containing grafted Econea biocide (<0.6 wt.%) were evaluated under simulated real mechanical wear conditions at a pilot-scale system, and under extreme wear scenarios (washability settings). The coating system demonstrated low environmental impact against the model Vibrio fischeri bacterium and marine algae, associated with the effective biocide grafting in the coating matrix and subsequent biocide release minimization. This multifunctional coating system also showed auspicious antifouling (AF) effects, with an AF performance index significantly higher (API > 89) than a single foul-release system (AF < 40) after two and half years at a real immersion scenario in the Portuguese shore of the Atlantic Ocean. These field results corroborated the antibiofilm performance evaluated with Pseudoalteromonas tunicata at simulated dynamic marine conditions after seven-week assays. This eco-friendly multifunctional strategy, validated by both simulated testing conditions and real field tests, is believed to be a powerful tool for the development of AF technologies and a potential contribution to the quest for new environmentally friendly antifouling solutions.


Subject(s)
Biofouling , Disinfectants , Biofouling/prevention & control , Disinfectants/toxicity , Pseudoalteromonas
9.
Mar Drugs ; 18(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992876

ABSTRACT

Marine biofouling represents a global economic and ecological challenge and few eco-friendly antifouling agents are available. The aim of this work was to establish the proof of concept that a recently synthesized nature-inspired compound (gallic acid persulfate, GAP) can act as an eco-friendly and effective antifoulant when immobilized in coatings through a non-release strategy, promoting a long-lasting antifouling effect. The synthesis of GAP was optimized to provide quantitative yields. GAP water solubility was assessed, showing values higher than 1000 mg/mL. GAP was found to be stable in sterilized natural seawater with a half-life (DT50) of 7 months. GAP was immobilized into several commercial coatings, exhibiting high compatibility with different polymeric matrices. Leaching assays of polydimethylsiloxane and polyurethane-based marine coatings containing GAP confirmed that the chemical immobilization of GAP was successful, since releases up to fivefold lower than the conventional releasing systems of polyurethane-based marine coatings were observed. Furthermore, coatings containing immobilized GAP exhibited the most auspicious anti-settlement effect against Mytilus galloprovincialis larvae for the maximum exposure period (40 h) in laboratory trials. Overall, GAP promises to be an agent capable of improving the antifouling activity of several commercial marine coatings with desirable environmental properties.


Subject(s)
Biofouling/prevention & control , Gallic Acid/chemistry , Polymers/chemistry , Animals , Dimethylpolysiloxanes/chemistry , Half-Life , Mytilus/growth & development , Polyurethanes/chemistry , Seawater , Solubility , Sulfates/chemistry , Time Factors
10.
Ecotoxicol Environ Saf ; 187: 109812, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31669574

ABSTRACT

Marine biofouling represents a global economic and ecological challenge. Some marine organisms produce bioactive metabolites, such as steroids, that inhibit the settlement and growth of fouling organisms. The aim of this work was to explore bile acids as a new scaffold with antifouling (AF) activity by using chemical synthesis to produce a series of bile acid derivatives with optimized AF performance and understand their structure-activity relationships. Seven bile acid derivatives were successfully synthesized in moderate to high yields, and their structures were elucidated through spectroscopic methods. Their AF activities were tested against both macro- and microfouling communities. The most potent bile acid against the settlement of Mytilus galloprovincialis larvae was the methyl ester derivative of cholic acid (10), which showed an EC50 of 3.7 µM and an LC50/EC50 > 50 (LC50 > 200 µM) in AF effectiveness vs toxicity studies. Two derivatives of deoxycholic acid (5 and 7) potently inhibited the growth of biofilm-forming marine bacteria with EC50 values < 10 µM, and five bile acids (1, 5, and 7-9) potently inhibited the growth of diatoms, showing EC50 values between 3 and 10 µM. Promising AF profiles were achieved with some of the synthesized bile acids by combining antimacrofouling and antimicrofouling activities. Initial studies on the incorporation of one of these promising bile acid derivatives in polymeric coatings, such as a marine paint, demonstrated the ability of these compounds to generate coatings with antimacrofouling activity.


Subject(s)
Aquatic Organisms/drug effects , Bile Acids and Salts/pharmacology , Biofouling/prevention & control , Disinfectants/pharmacology , Paint , Animals , Aquatic Organisms/growth & development , Bacteria/drug effects , Bacteria/growth & development , Bile Acids and Salts/chemical synthesis , Biofilms/drug effects , Biofilms/growth & development , Disinfectants/chemical synthesis , Microalgae/drug effects , Microalgae/growth & development , Mytilus/drug effects , Polyurethanes/chemistry , Silicones/chemistry
11.
Antibiotics (Basel) ; 8(4)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739454

ABSTRACT

A series of cyclam- and cyclen-derived salts are described in the present work; they were designed specifically to gain insights into their structure and antibacterial activity towards Staphylococcus aureus and Escherichia coli, used respectively, as Gram-positive and Gram-negative model organisms. The newly synthesized compounds are monosubstituted and trans-disubstituted tetraazamacrocycles that display benzyl, methylbenzyl, trifluoromethylbenzyl, or trifluoroethylbenzyl substituents appended on the nitrogen atoms of the macrocyclic ring. The results obtained show that the chemical nature, polarity, and substitution patterns of the benzyl groups, as well as the number of pendant arms, are critical parameters for the antibacterial activity of the cyclam-based salts. The most active compounds against both bacterial strains were the trans-disubstituted cyclam salts displaying CF3 groups in the para-position of the aromatic rings of the macrocyclic pendant arms. The analogous cyclen species presents a lower activity, revealing that the size of the macrocyclic backbone is an important requirement for the antibacterial activity of the tetraazamacrocycles. The nature of the anionic counterparts present on the salts was found to play a minor role in the antibacterial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...