Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793516

ABSTRACT

Cutlery and flatware designs are an everchanging phenomenon of the manufacturing industry. Worldwide hospitality businesses demand perpetual evolution in terms of aesthetics, designs, patterns, colours, and materials due to customers' demands, modernisation, and fierce competition. To thrive in this competitive market, modern fabrication techniques must be flexible, adoptive, fast, and cost effective. For decades, static designs and trademark patterns were achieved through moulds, limiting production to a single cutlery type per mould. However, with the advent of laser engraving and design systems, the whole business of cutlery production has been revolutionised. This study explores the possibility of creating diverse designs for stainless steel 304 flatware sets without changing the entire production process. The research analyses three key laser process parameters, power, scanning speed, and number of passes, and their impacts on the resulting geometry, depth of cut, surface roughness, and material removed. These parameters are comprehensively studied and analysed for steel and zirconia ceramic. The study details the effects of power, scanning speed, number of passages, and fluence on engraved geometry. Fluence (power*number of passages/scanning speed) positively influences outputs and presents a positive trend. Medium power settings and higher scanning speeds with the maximum number of passages produce high-quality, low-roughness optimised cavities with the ideal geometric accuracy for both materials.

2.
Biomimetics (Basel) ; 8(4)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37622943

ABSTRACT

Barium titanate (BaTiO3) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of human osteoblasts and gingival fibroblasts as well as the impact on S. oralis when in contact with BaTiO3 functionalized zirconia implant surfaces with piezoelectric properties. Zirconia discs with BaTiO3 were produced and contact poling (piezo activation) was performed. Osteoblasts (hFOB 1.19), fibroblasts (HGF hTERT) and S. oralis were culture on discs. Cell viability and morphology, cell differentiation markers, bacterial adhesion and growth were evaluated. The present study suggests that zirconia composite surfaces with the addition of piezoelectric BaTiO3 are not cytotoxic to peri-implant cells. Also, they seem to promote a faster initial osteoblast differentiation. Moreover, these surfaces may inhibit the growth of S. oralis by acting as a bacteriostatic agent over time. Although the piezoelectric properties do not affect the cellular inflammatory profile, they appear to enable the initial adhesion of bacteria, however this is not significant over the entire testing period. Furthermore, the addition of non-poled BaTiO3 to zirconia may have a potential reduction effect on IL-6 mediated-inflammatory activity in fibroblasts.

3.
Materials (Basel) ; 15(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407819

ABSTRACT

Two type of cells representing periodontal hard tissues (osteoblasts) and soft tissues (fibroblasts) were evaluated in response to microgroove-milled zirconia surfaces. A total of 90 zirconia discs were randomly assigned to four width-standardized milling microgroove-textured groups and a control group without grooves (UT). The sandblast and acid-etch protocol were applied to all samples. Both cell lines were cultured on zirconia discs from 1 day up to 14 days. Cell morphology and adhesion were evaluated after 1 day of culturing. Cell viability and proliferation of the cells were measured. Alkaline phosphatase activity, collagen I, osteopontin, interleukin 1ß and interleukin 8 secretions were assessed at predefined times. The results obtained were presented in the form of bar graphs as means and standard deviations. Multi comparisons between groups were evaluated using two-away ANOVA or Mann−Whitney tests, and a p-value < 0.05 was established. Group comparisons with regard to cell viability, proliferation and secretion of collagen I, interleukin-1ß and interleukin 8 revealed no statistically significant differences. The alkaline phosphatase activity and osteopontin secretion were significantly higher in the group with a large groove compared to the small one and the control group. Nevertheless, the viability of gingival and bone cells did not appear to be affected by the milled microgroove texture compared to the conventional sandblasted and acid-etched texture, but they seem to influence osteoblasts' cellular differentiation.

4.
J Oral Biosci ; 64(1): 100-107, 2022 03.
Article in English | MEDLINE | ID: mdl-35143954

ABSTRACT

OBJECTIVES: This study aimed to assess the independent influence of grooves and pores texturized by milling on gold-standard zirconia implant surfaces. METHODS: Milled groove and pore textured with equivalent width, depth, and spacing on zirconia discs were produced using press and sintering techniques. All samples were sandblasted and acid-etched (SBAE), and untextured discs were used as controls. Osteoblasts and fibroblasts were cultured on discs for 14 days. Field emission gun-scanning electron microscopy (FEG-SEM) was used to observe cellular adhesion and morphology. Cell viability and proliferation assays were performed. Additionally, alkaline phosphatase activity, collagen type I, and osteopontin were evaluated at pre-defined time points. Results are presented as mean and standard deviation (SD), group comparisons were tested using one-way ANOVA (Tukey's post-hoc), and significance was set at P < 0.05. RESULTS: FEG-SEM images revealed cellular adhesion at 24 h in all samples with differences in distribution. Although both cell lines showed increased cell viability and differentiation cell markers such as collagen and osteopontin over time, statistically significant differences between groups were found in none of the quantitative study variables (P > 0.05). CONCLUSION: The results suggest similar cellular behavior between different patterns with similar dimensions and between them and microtopography by SBAE protocol currently used as the gold-standard for zirconia dental implants. The addition of pore and groove microtextures to the gold-standard zirconia dental implant surfaces treated with SBAE does not seem to be an asset in the cellular behavior of the hard and soft tissue cells.


Subject(s)
Dental Implants , Osteopontin , Surface Properties , Zirconium
5.
Materials (Basel) ; 15(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057411

ABSTRACT

The purpose of the present study was to experimentally assess the synergistic effects of wear and corrosion on NiTi alloy in comparison with Ti-6Al-4V alloy, the most extensively used titanium alloy in biomedical applications. Both alloys were processed by an additive manufacturing laser beam directed energy deposition (LB-DED) technique, namely laser engineered net shaping (LENS), and analyzed via tribocorrosion tests by using the ball-on-plate configuration. The tests were carried out in phosphate buffered saline solution at 37 °C under open circuit potential (OCP) to simulate the body environment and temperature. The synergistic effect of wear and corrosion was found to result in an improved wear resistance in both materials. It was also observed that, for the process parameters used, the LB-DED NiTi alloy exhibits a lower tendency to corrosion as compared to the LB-DED Ti-6Al-4V alloy. It is expected that, during the service life as an implant, the NiTi alloy is less susceptible to the metallic ions release when compared with the Ti-6Al-4V alloy.

6.
J Biomed Mater Res B Appl Biomater ; 110(1): 249-258, 2022 01.
Article in English | MEDLINE | ID: mdl-34278714

ABSTRACT

Yttria-stabilized zirconia (YSZ) is being proposed as an alternative material to Titanium for dental implants due to its aesthetic and biocompatibility properties. However, is it yet to define the optimal surface treatment to improve YSZ bioactivy. Texturization is a promising approach, but the biological role of patterned YSZ surfaces in cell cultures is yet to be determined. Thus, cellular behavior of osteoblasts and fibroblasts in contact with groove-texturized YSZ surfaces was investigated. YSZ discs were groove-textured by conventional milling and Nd:YAG laser. All samples including control were sandblasted and acid-etched. Human osteoblasts and fibroblasts were cultured on discs for 14 days. Morphology and cellular adhesion were observed. Cell viability, interleukin-1ß, osteopontin, collagen type I prodution, alkaline phosphatase activity, and interleukin-8 were measured. YSZ texturization by conventional milling improved osteoblasts viability and differentiation when compared to laser texturization. Fibroblasts behavior did not seem to be influenced by the texturing technique. Compared to sandblasting and acid etching currently used as gold standard for zirconia dental implants no superiority of macrotexturization was found.


Subject(s)
Dental Implants , Humans , Osteoblasts , Surface Properties , Titanium/pharmacology , Yttrium , Zirconium/pharmacology
7.
Adv Colloid Interface Sci ; 290: 102380, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33819727

ABSTRACT

Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.


Subject(s)
Biosensing Techniques , Magnetite Nanoparticles , Ferric Compounds
8.
J Oral Implantol ; 47(1): 9-17, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32663305

ABSTRACT

The aim of this study was to characterize the mechanical properties of a bioactive-modified polyetheretherketone (PEEK) manufacturing approach for dental implants and to compare the in vitro biological behavior with titanium alloy (Ti6Al4V) as the reference. PEEK, PEEK with 5% hydroxyapatite (HA), PEEK with 5% beta-tricalcium phosphate (ßTCP), and Ti6Al4V discs were produced using hot pressing technology to create a functionally graded material (FGM). Surface roughness values (Ra, Rz), water contact angle, shear bond strength, and Vickers hardness tests were performed. Human osteoblasts and gingival fibroblasts bioactivity was evaluated by a resazurin-based method, alkaline phosphatase activity (ALP), and confocal laser scanning microscopy (CLSM) images of fluorescent-stained fibroblasts. Morphology and cellular adhesion were confirmed using field emission gun-scanning electron microscopy (FEG-SEM). Group comparisons were tested using analysis of variance (Tukey post hoc test), α = .05. All groups presented similar roughness values (P > .05). Ti6Al4V group was found to have the highest contact angle (P < .05). Shear bond strength and Vickers hardness of different PEEK materials were similar (P > .05); however, the mean values in the Ti6Al4V group were significantly higher when compared with those of the other groups (P < .05). Cell viability and proliferation of osteoblast and fibroblast cells were higher in the PEEK group (P < .05). PEEK-ßTCP showed the highest significant ALP activity over time (P < .05 at 14 days of culture). An enhanced bone and soft-tissue cell behavior on pure PEEK was obtained to the gold standard (Ti6Al4V) with equivalent roughness. The results substantiate the potential role of chemical composition rather than physical properties of materials in biological responses. The addition of 5% HA or ßTCP by FGM did not enhance PEEK mechanical properties or periodontal cell behavior.


Subject(s)
Dental Implants , Benzophenones , Humans , Ketones , Polyethylene Glycols , Polymers , Surface Properties , Titanium
9.
J Appl Oral Sci ; 28: e20200100, 2020.
Article in English | MEDLINE | ID: mdl-32667382

ABSTRACT

Adding a biological apatite layer to the implant surface enhances bone healing around the implant. Objective This study aimed to characterize the mechanical properties and test human gingival fibroblasts behavior in contact with Zirconia and Titanium bioactive-modified implant materials. Methodology 6 groups were considered: Titanium (Ti6Al4V), Ti6Al4V with 5% HA and 5% ßTCP, Zirconia (YTZP), YTZP with 5% HA and 5% ßTCP. For each group, we produced discs using a novel fabrication method for functionally graded materials, under adequate conditions for etching and grit-blasting to achieve equivalent surface microroughness among the samples. Surface roughness (Ra, Rz), water contact angle, shear bond strength, and Vickers hardness were performed. Human gingival fibroblasts immortalized by hTERT gene from the fourth passage, were seeded on discs for 14 days. Cell viability and proliferation were assessed using a resazurin-based method, and cellular adhesion and morphology using field emission gun scanning electron microscopy (FEG-SEM). After 3 days of culture, images of fluorescent nucleic acid stain were collected by confocal laser scanning microscopy (CLSM). Results Results were presented as mean ± standard deviation (SD). We compared groups using one-way ANOVA with Tukey's post-hoc test, and significance level was set at p<0.05. After 14 days of culture, cell viability and proliferation were significantly higher in YTZP group than in other groups (p<0.05). Samples of YTZP-ßTCP presented significantly higher wettability (p<0.05); yet, we observed no improvement in cell behavior on this group. Fibroblast spreading and surface density were more evident on YTZP specimens. Adding calcium-phosphate bioactive did not alter the tested mechanical properties; however, Ti6Al4V material shear bond strength was statistically higher than other groups (p<0.05). Conclusion Adding bioactive materials did not improve soft-tissue cell behavior. When compared to other zirconia and titanium groups, pure zirconia surface improved adhesion, viability and proliferation of fibroblasts. Cell behavior seems to depend on surface chemical composition rather than on surface roughness.


Subject(s)
Dental Implants , Fibroblasts , Titanium , Zirconium , Humans , Microscopy, Electron, Scanning , Surface Properties
10.
Lasers Med Sci ; 35(9): 2039-2048, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32556830

ABSTRACT

Zirconia has been regarded as a promising material for dental implants, and Nd:YAG laser treatment has been proposed as a potential strategy to improve its bioactivity. The main aim of the present study was to evaluate the in vitro behavior of human fetal osteoblasts in contact with laser-textured zirconia implant surfaces assessing the effect of different texture patterns, spacing between laser passes and number of laser passes. Zirconia discs were produced and treated with Nd:YAG laser according to test group variables: texture (microgrooves and micropillar array), distance between surface features (25 µm, 30 µm and 35 µm), and laser passes [1, 2, 4, and 8]. Untextured sandblasted and acid-etched zirconia discs (SBAE) were used as controls. Human osteoblasts (hFOB 1.19) were cultured for 14 days on test and control samples. Morphology and cellular adhesion were observed using scanning electron microscopy (SEM). Cell viability and proliferation were evaluated at 1, 3, 7, and 14 days using a commercial resazurin-based method. Collagen type I was evaluated at 3 days using ELISA. Alkaline phosphatase (ALP) activity was evaluated at 7 days using a colorimetric enzymatic technique. Group comparisons were tested using ANOVA or Mann-Whitney test (Tukey's post hoc) using statistical software, and significance was set at p < 0.05. Cell viability and proliferation increased over time for all groups with statistically higher values for laser-textured groups when compared with control at 7 and 14 days in culture (p < 0.05). Collagen type I levels were higher for study groups (p < 0.05) when compared with control group. No statistically differences were detected for ALP activity levels between texture and control groups (p > 0.05). The results suggest that laser-machined zirconia implant surfaces may benefit biological osteoblast response. However, the type of texture, spacing at the range of 25-35 µm, and number of laser passes did not seem to be relevant variables.


Subject(s)
Lasers, Solid-State , Osteoblasts/radiation effects , Prostheses and Implants , Zirconium/pharmacology , Cell Adhesion/drug effects , Cell Adhesion/radiation effects , Cell Shape/drug effects , Cell Shape/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Humans , Osteoblasts/cytology , Osteoblasts/ultrastructure , Surface Properties
11.
J Mater Sci Mater Med ; 31(3): 27, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32124052

ABSTRACT

Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.


Subject(s)
Bone Development , Bone Regeneration , Tissue Engineering/instrumentation , Tissue Engineering/methods , Tissue Scaffolds , Alginates/chemistry , Animals , Autografts , Biocompatible Materials/chemistry , Biomechanical Phenomena , Cell Differentiation , Cell Proliferation , Ceramics , Chondrocytes/cytology , Elasticity , Female , Humans , Mesenchymal Stem Cells/cytology , Mice , Middle Aged , Osteoblasts/cytology , Osteogenesis , Polymers/chemistry , Porosity , Pressure , Rabbits , Sheep , Solvents
12.
J. appl. oral sci ; 28: e20200100, 2020. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1134773

ABSTRACT

Abstract Adding a biological apatite layer to the implant surface enhances bone healing around the implant. Objective This study aimed to characterize the mechanical properties and test human gingival fibroblasts behavior in contact with Zirconia and Titanium bioactive-modified implant materials. Methodology 6 groups were considered: Titanium (Ti6Al4V), Ti6Al4V with 5% HA and 5% ßTCP, Zirconia (YTZP), YTZP with 5% HA and 5% ßTCP. For each group, we produced discs using a novel fabrication method for functionally graded materials, under adequate conditions for etching and grit-blasting to achieve equivalent surface microroughness among the samples. Surface roughness (Ra, Rz), water contact angle, shear bond strength, and Vickers hardness were performed. Human gingival fibroblasts immortalized by hTERT gene from the fourth passage, were seeded on discs for 14 days. Cell viability and proliferation were assessed using a resazurin-based method, and cellular adhesion and morphology using field emission gun scanning electron microscopy (FEG-SEM). After 3 days of culture, images of fluorescent nucleic acid stain were collected by confocal laser scanning microscopy (CLSM). Results Results were presented as mean ± standard deviation (SD). We compared groups using one-way ANOVA with Tukey's post-hoc test, and significance level was set at p<0.05. After 14 days of culture, cell viability and proliferation were significantly higher in YTZP group than in other groups (p<0.05). Samples of YTZP-ßTCP presented significantly higher wettability (p<0.05); yet, we observed no improvement in cell behavior on this group. Fibroblast spreading and surface density were more evident on YTZP specimens. Adding calcium-phosphate bioactive did not alter the tested mechanical properties; however, Ti6Al4V material shear bond strength was statistically higher than other groups (p<0.05). Conclusion Adding bioactive materials did not improve soft-tissue cell behavior. When compared to other zirconia and titanium groups, pure zirconia surface improved adhesion, viability and proliferation of fibroblasts. Cell behavior seems to depend on surface chemical composition rather than on surface roughness.


Subject(s)
Humans , Titanium , Zirconium , Dental Implants , Fibroblasts , Surface Properties , Microscopy, Electron, Scanning
13.
J Prosthet Dent ; 121(3): 547.e1-547.e7, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30661878

ABSTRACT

STATEMENT OF PROBLEM: Infiltrated zirconia has promising mechanical properties. However, information about its optical behavior is scarce. PURPOSE: The purpose of this in vitro study was to evaluate the color and translucency of zirconia submitted to infiltration and aging. MATERIAL AND METHODS: Sixty zirconia disks were machined. Ten disks received no treatment (NT group), 10 disks were immersed in a coloring liquid (A2 group), and 10 disks were immersed in a fluorescent liquid (F group). The other 30 disks were submitted to the same treatments plus glass infiltration (NT+I, A2+I, and F+I groups). The coordinates L*, a*, and b* and the Y tristimulus values were obtained to calculate the color (ΔE00), lightness, chroma, and hue differences; the translucency parameter (TP); and the contrast ratio (CR) associated with the specimens. After aging in an autoclave for 4 hours (T1), new measurements were made. Two- and 3-way ANOVAs were used to analyze color differences, TP, and CR. The lightness, chroma, and hue differences were evaluated by a repeated measures ANOVA. Multiple comparisons were made with the Tukey honestly significant difference (HSD) test (α=.05). RESULTS: The greatest color differences were observed in the A2+I group (11.23 ΔE00) (P<.001). Aging affected the chroma of the colored groups (P=.013 and P=.001) but did not affect their translucency (P=.347 for TP and P=.132 for CR). The greatest TP values were found in the NT and NT+I groups (2.54 and 2.34, respectively), whereas the CR was equal to or close to 1 in all groups. CONCLUSIONS: Color differences were observed in the glass-infiltrated groups. The TP and CR were affected by infiltration. Aging did not influence the optical behavior of the specimens.


Subject(s)
Ceramics , Dental Porcelain , Color , Materials Testing , Zirconium
14.
Knee Surg Sports Traumatol Arthrosc ; 27(3): 745-757, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29974174

ABSTRACT

PURPOSE: Summarize the in vivo instrumented-assisted patellofemoral evaluation methods for quantifying the patellar mobility in response to a known external force. METHODS: A systematic review using PubMed, EMBASE, Cochrane Library, and SPORTDiscus electronic databases was conducted to search for studies reporting in vivo instrumented-assisted patellofemoral evaluation of patellar mobility. Searches were conducted in duplicate up to October 2017. Methodologic quality of included articles was assessed using a modified version of the Critical Appraisal Skills Program (CASP) critical appraisal tool. RESULTS: From the original 2614 records, 9 studies comprising 568 individuals (24 ± 4.8 years old, 51.4% females)-355 (62.5%) asymptomatic individuals, 87 (15.3%) patellofemoral pain, and 126 (22.2%) patellofemoral instability patients-were included. The average maximum force applied by the instruments to the patella was 38.9 ± 27.7 N (range 11.25 to 80 N). Patellar displacement ranged from 3.9 to 10.4 mm, medially, and 3.5 to 14.8 mm, laterally, for asymptomatic individuals. For patellofemoral instability patients, these values were higher, ranging from 3.8 to 22.1 mm, medially, and 7.0 to 21.9 mm, laterally, being these mean values similar across the instability subgroups (medial, lateral, or multidirectional). Patellofemoral pain had a mean of 10 mm and 10.9 mm for medial and lateral displacements, respectively. Mean methodological quality score was 9.8 ± 2.6 (range 6-13) out of 18 possible points. CONCLUSIONS: There is high heterogeneity within the available instrumented assessment methods and respective measurement outcomes, highlighting the need for better methodological standardization and further developments in this field. This would allow a more accurate and reliable quantification of patellar movement and, subsequently, improve diagnosis, and refine treatment. LEVEL OF EVIDENCE: Systematic review of level II-IV studies, Level IV.


Subject(s)
Joint Instability/diagnosis , Patellofemoral Joint/physiology , Range of Motion, Articular/physiology , Stress, Physiological , Adolescent , Adult , Aged , Child , Databases, Factual , Female , Humans , Male , Middle Aged , Young Adult
15.
Int J Oral Maxillofac Implants ; 34(1): 39­46, 2019.
Article in English | MEDLINE | ID: mdl-30282086

ABSTRACT

PURPOSE: The aim of this study was to characterize and compare the behavior of human osteoblasts and human gingival fibroblasts in contact with polyetheretherketone (PEEK), zirconia, and titanium implant surface materials. MATERIALS AND METHODS: PEEK, yttria-stabilized zirconia (YTZP), and titanium discs were produced under appropriate and similar conditions to achieve controlled surface features. Human osteoblasts and human gingival fibroblasts were cultured on discs for 14 days. Cell viability and proliferation were evaluated using a resazurin-based method. Morphology and cellular adhesion were observed using field emission gun-scanning electron microscopy (FEG-SEM). Alkaline phosphatase (ALP) activity and bone cell mineralization were evaluated on osteoblasts. Confocal laser scanning microscopy (CLSM) images of fluorescent-stained fibroblasts were obtained at 7 and 14 days of the culture. Results were presented as mean and standard deviation (SD). Group comparisons were tested using analysis of variance (ANOVA) (Tukey's post hoc) with appropriate statistical software, and significance was set at P < .05. RESULTS: Cell viability and proliferation were higher in PEEK and YTZP groups compared with titanium on osteoblast cells (P < .05, all time points) and on fibroblasts (P < .05, 7 and 14 days). All groups showed an increase in ALP activity over time, which was not significant. Mineralization patterns demonstrated an increase in mineral content over time, which was more apparent in the YTZP group. Cell spreading was more evident on PEEK and YTZP specimens. CONCLUSION: The results suggest increased adhesion, viability, and proliferation of osteoblasts and gingival fibroblasts on zirconia and PEEK surfaces compared with titanium. These results are correlated with the increased wettability of these materials.


Subject(s)
Dental Materials , Fibroblasts/physiology , Ketones , Osteoblasts/physiology , Polyethylene Glycols , Titanium , Zirconium , Analysis of Variance , Benzophenones , Cell Adhesion , Cell Proliferation , Cell Survival , Cells, Cultured , Fibroblasts/cytology , Gingiva/cytology , Humans , Microscopy, Electron, Scanning , Osteoblasts/cytology , Polymers , Surface Properties
16.
J Esthet Restor Dent ; 30(5): 397-407, 2018 09.
Article in English | MEDLINE | ID: mdl-30375751

ABSTRACT

OBJECTIVE: This review integrates published scientific information about the fluorescence of natural teeth, dental resins and ceramics, and the main methods of analysis and quantification presented in the literature. OVERVIEW: Fluorescence is an emission of light (photons) by a substance that has absorbed light of higher energy. In natural teeth, it is more intense in the dentin than in the enamel and presents a bluish-white color. In dental resins and ceramics, fluorescence is obtained by the incorporation of materials that contain rare-earth luminescence centers (more precisely lanthanide luminescence centers), which allows these artificial materials to simulate natural teeth in a more beautiful and vital-looking way. However, the lack of knowledge about this optical phenomenon on the part of professionals indicates the need for more scientific studies and dissemination on this topic. CONCLUSIONS: Aesthetic materials have variable spectral compositions and fluorescence intensities, which are not always compatible with natural teeth. The fluorescence of teeth and restorative materials can be influenced by several factors, such as aging, temperature, and bleaching. Several devices for fluorescence evaluation and quantification are used in studies under different methodologies, but the small number of studies on the subject make it difficult to compare their results. CLINICAL SIGNIFICANCE: Fluorescence is a fundamental optical property for aesthetic rehabilitations since its presence and intensity in the restorative materials allows achieving an aesthetic result much closer to reality. However, the fluorescent behavior of natural teeth and aesthetic restorative materials is not yet fully understood by researchers and clinicians. Greater understanding of this phenomenon will contribute to the selection, indication, and clinical use of these materials.


Subject(s)
Dental Materials , Dental Restoration, Permanent , Composite Resins , Dental Enamel , Dentin , Fluorescence
17.
J Adhes Dent ; 16(5): 451-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25191667

ABSTRACT

PURPOSE: To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. MATERIALS AND METHODS: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-µm silica-modified Al2O3particles (Rocatec Soft); 2) 110-µm silica-modified Al2O3particles (Rocatec Plus); and 3) 120-µm Al2O3particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. RESULTS: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-µm Al2O3particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. CONCLUSION: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.


Subject(s)
Dental Porcelain/chemistry , Yttrium/chemistry , Zirconium/chemistry , Aluminum Oxide/chemistry , Crystallography , Dental Etching/methods , Dental Stress Analysis/instrumentation , Dental Veneers , Diamond/chemistry , Elastic Modulus , Hot Temperature , Materials Testing , Pliability , Silicon Dioxide/chemistry , Stress, Mechanical , Surface Properties , Water/chemistry , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...