Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917616

ABSTRACT

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10-6 m2/s, 2.9285 to 12.754 × 10-9 m2/s and 1.5393 × 10-8 to 12.4270 × 10-6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50-80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.

2.
Foods ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374864

ABSTRACT

It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given the sensitivity of probiotic cultures to process conditions. Therefore, the objective of this study is to evaluate gelatin- and inulin-based filmogenic solutions as a potential vehicle for incorporating probiotics into food products and to model the fermentation kinetics. L. salivarius (Lactobacillus salivarius) growth in filmogenic solutions was analyzed under the influence of a variety gelatin concentrations (1.0-3.0%) and inulin concentrations (4.0-6.0%) and fermented under the effect of different temperatures (25-45 °C). A full 23 factorial plan with three replicates at the central point was used to optimize the process. The impacts of process conditions on cell development are fundamental to optimize the process and make it applicable by the industry. The present study showed that the optimal conditions for the development of probiotic cells in filmogenic solutions are a combination of 1.0% gelatin with 4.0% inulin and fermentation temperature of 45 °C. It was observed that the maximum cell growth occurred in an estimated time of about 4 h of fermentation. L. salivarius cell production and substrate consumption during the fermentation of the filmogenic solution were well simulated by a model proposed in this article, with coefficients of determination of 0.981 (cell growth) and 0.991 (substrate consumption).

3.
J Food Sci Technol ; 57(5): 1877-1886, 2020 May.
Article in English | MEDLINE | ID: mdl-32327798

ABSTRACT

The increasing sensitivity to gluten has aroused interest in gluten-free products like bread. However, one of the biggest challenges of producing gluten-free bread is to get a good quality structure. We hypothesize that using chitosan along with transglutaminase, a network of crosslinks would be generated, guaranteeing a better structure. Thus, in the present work, we produced gluten-free bread using red rice flour and cassava flour, transglutaminase, and chitosan at concentrations of 0%, 1%, and 2%. Loaves of bread were characterized, and the instrumental texture properties during five days were determined. Bread produced with chitosan and transglutaminase presented lighter brown coloration due to incomplete Maillard reaction and low specific volumes varying from 1.64 to 1.48 cm3/g, possibly due to chitosan interfering with yeast fermentation. Rheological tests revealed increases in viscosity before and after fermentation when chitosan was used. Bread with chitosan presented high initial firmness but a lower rate of staling, possibly due to water retention. According to results, a possible network involving chitosan and other proteins promoted by transglutaminase was formed and after optimization could yield better gluten-free bread.

4.
J Food Sci Technol ; 56(6): 2949-2958, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31205350

ABSTRACT

The aim of this study was to develop gluten-free bread formulated with red rice flour and microbial transglutaminase and prebiotic (inulin). First, the physicochemical analysis of minerals present in red rice flour was performed. Response surface methodology was used to analyze the effects of microbial transglutaminase (MTgase) [0.5; 1.0 and 1.5%] in combination with fermentation time (FT) [60; 80 and 100 min] on the quality parameters of gluten-free bread. Acceptance test was used to evaluate the sensory characteristics of breads together with multivariate analysis of data. The addition of MTgase increased bread volume, hardness and chewiness. However, the cohesiveness and springiness of all breads remained unaffected. The formulation (1.0% MTgase and 80 min FT) presented the best sensory attributes through PCA (principal component analysis) and greater acceptance. Overall, red rice flour, prebiotic and MTgase are promisingly useful ingredients for the production of gluten-free quality bread.

SELECTION OF CITATIONS
SEARCH DETAIL
...