Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203068

ABSTRACT

Musculoskeletal conditions affect millions of people globally; however, conventional treatments pose challenges concerning price, accessibility, and convenience. Many telerehabilitation solutions offer an engaging alternative but rely on complex hardware for body tracking. This work explores the feasibility of a model for 3D Human Pose Estimation (HPE) from monocular 2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to ground truth measurements. MediaPipe Pose was investigated in eight exercises typically performed in musculoskeletal physiotherapy sessions, where the Range of Motion (ROM) of the human joints was the evaluated parameter. This model showed the best performance for shoulder abduction, shoulder press, elbow flexion, and squat exercises. Results have shown a MAPE ranging between 14.9% and 25.0%, Pearson's coefficient ranging between 0.963 and 0.996, and cosine similarity ranging between 0.987 and 0.999. Some exercises (e.g., seated knee extension and shoulder flexion) posed challenges due to unusual poses, occlusions, and depth ambiguities, possibly related to a lack of training data. This study demonstrates the potential of HPE from monocular 2D videos, as a markerless, affordable, and accessible solution for musculoskeletal telerehabilitation approaches. Future work should focus on exploring variations of the 3D HPE models trained on physiotherapy-related datasets, such as the Fit3D dataset, and post-preprocessing techniques to enhance the model's performance.


Subject(s)
Telerehabilitation , Humans , Feasibility Studies , Exercise Therapy , Exercise , Knee Joint
2.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068131

ABSTRACT

In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact. The e-CoVig provides a set of functionalities for remote reporting of symptoms, vital signs, and other clinical information to the health services taking care of these patients. The application is designed to register and transmit the heart rate, blood oxygen saturation (SpO2), body temperature, respiration, and cough. The system features a mobile application, a web/cloud platform, and a low-cost specific device to acquire the temperature and SpO2. The architecture of the system is flexible and can be configured for different operation conditions. Current commercial devices, such as oximeters and thermometers, can also be used and read using the optical character recognition (OCR) functionality of the system. The data acquired at the mobile application are sent automatically to the web/cloud application and made available in real-time to the medical staff, enabling the follow-up of several users simultaneously without the need for time consuming phone call interactions. The system was already tested for its feasibility and a preliminary deployment was performed on a nursing home showing promising results.


Subject(s)
COVID-19 , Mobile Applications , Telemedicine , Humans , Quarantine , SARS-CoV-2
3.
Sports (Basel) ; 7(11)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744156

ABSTRACT

In a world where technology is assuming a pervasive role, sports sciences are also increasingly exploiting the possibilities opened by advanced sensors and intelligent algorithms. This paper focuses on the development of a convenient, practical, and low-cost system, SwimBIT, which is intended to help swimmers and coaches in performance evaluation, improvement, and injury reduction. Real-world data were collected from 13 triathletes (age 20.8 ± 3.5 years, height 173.7 ± 5.3 cm, and weight 63.5 ± 6.3 kg) with different skill levels in performing the four competitive styles of swimming in order to develop a representative database and allow assessment of the system's performance in swimming conditions. The hardware collects a set of signals from swimmers based on an attitude and heading reference system (AHRS), and a machine learning workflow for data analysis is used to extract a selection of indicators that allows analysis of a swimmer's performance. Based on the AHRS data, three novel indicators are proposed: trunk elevation, body balance, and body rotation. Experimental evaluation has shown promising results, with a 100% accuracy in swim lap segmentation, a precision of 100% in the recognition of backstroke, and a precision of 89.60% in the three remaining swimming techniques (butterfly, breaststroke, and front crawl). The performance indicators proposed here provide valuable information for both swimmers and coaches in their quest for enhancing performance and preventing injuries.

4.
Sensors (Basel) ; 19(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018573

ABSTRACT

We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...