Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Cyst Fibros ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749892

ABSTRACT

BACKGROUND: The forskolin-induced swelling (FIS) assay measures CFTR function on patient-derived intestinal organoids (PDIOs) and may guide treatment selection for individuals with Cystic Fibrosis (CF). The aim of this study is to demonstrate the repeatability and reproducibility of the FIS assay following a detailed Standard Operating Procedure (SOP), thus advancing the validation of the assay for precision medicine (theranostic) applications. METHODS: Over a 2-year period, FIS responses to CFTR modulators were measured in four European labs. PDIOs from six subjects with CF carrying different CFTR genotypes were used to assess the repeatability and reproducibility across the dynamic range of the assay. RESULTS: Technical, intra-assay repeatability was high (Lin's concordance correlation coefficient (CCC) 0.95-0.98). Experimental, within-subject repeatability was also high within each lab (CCCs all >0.9). Longer-term repeatability (>1 year) showed more variability (CCCs from 0.67 to 0.95). The reproducibility between labs was also high (CCC ranging from 0.92 to 0.97). Exploratory analysis also found that between-lab percentage of agreement of dichotomized CFTR modulator outcomes for predefined FIS thresholds ranged between 78 and 100 %. CONCLUSIONS: The observed repeatability and reproducibility of the FIS assay within and across different labs is high and support the use of FIS as biomarker of CFTR function in the presence or absence of CFTR modulators.

2.
Front Mol Biosci ; 10: 1155705, 2023.
Article in English | MEDLINE | ID: mdl-37006619

ABSTRACT

Most of the 2,100 CFTR gene variants reported to date are still unknown in terms of their disease liability in Cystic Fibrosis (CF) and their molecular and cellular mechanism that leads to CFTR dysfunction. Since some rare variants may respond to currently approved modulators, characterizing their defect and response to these drugs is essential for effective treatment of people with CF (pwCF) not eligible for the current treatment. Here, we assessed how the rare variant, p.Arg334Trp, impacts on CFTR traffic and function and its response to existing CFTR modulators. To this end, we performed the forskolin-induced swelling (FIS) assay on intestinal organoids from 10 pwCF bearing the p.Arg334Trp variant in one or both alleles of the CFTR gene. In parallel, a novel p.Arg334Trp-CFTR expressing CFBE cell line was generated to characterize the variant individually. Results show that p.Arg334Trp-CFTR does not significantly affect the plasma membrane traffic of CFTR and evidences residual CFTR function. This CFTR variant is rescued by currently available CFTR modulators independently of the variant in the second allele. The study, predicting clinical benefit for CFTR modulators in pwCF with at least one p.Arg334Trp variant, demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs for pwCF carrying rare CFTR variants. We recommend that this personalized approach should be considered for drug reimbursement policies by health insurance systems/national health services.

3.
J Pers Med ; 13(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36675763

ABSTRACT

The R334W (c.1000C>T, p.Arg334Trp) is a rare cystic fibrosis (CF)-causing mutation for which no causal therapy is currently approved. This mutation leads to a significant reduction of CF transmembrane conductance regulator (CFTR) channel conductance that still allows for residual function. Potentiators are small molecules that interact with CFTR protein at the plasma membrane to enhance CFTR-dependent chloride secretion, representing thus pharmacotherapies targeting the root cause of the disease. Here, we generated a new CF bronchial epithelial (CFBE) cell line to screen a collection of compounds and identify novel potentiators for R334W-CFTR. The active compounds were then validated by electrophysiological assays and their additive effects in combination with VX-770, genistein, or VX-445 were exploited in this cell line and further confirmed in intestinal organoids. Four compounds (LSO-24, LSO-25, LSO-38, and LSO-77) were active in the functional primary screen and their ability to enhance R334W-CFTR-dependent chloride secretion was confirmed using electrophysiological measurements. In silico ADME analyses demonstrated that these compounds follow Lipinski's rule of five and are thus suggested to be orally bioavailable. Dose−response relationships revealed nevertheless suboptimal efficacy and weak potency exerted by these compounds. VX-770 and genistein also displayed a small potentiation of R334W-CFTR function, while VX-445 demonstrated no potentiator activity for this mutation. In the R334W-expressing cell line, CFTR function was further enhanced by the combination of LSO-24, LSO-25, LSO-38, or LSO-77 with VX-770, but not with genistein. The efficacy of potentiator VX-770 combined with active LSO compounds was further confirmed in intestinal organoids (R334W/R334W genotype). Taken together, these molecules were demonstrated to potentiate R334W-CFTR function by a different mechanism than that of VX-770. They may provide a feasible starting point for the design of analogs with improved CFTR-potentiator activity.

4.
J Pers Med ; 12(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36013270

ABSTRACT

The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.

5.
Genome ; 65(10): 513-523, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36037528

ABSTRACT

Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the OPTN gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.


Subject(s)
Cell Cycle Proteins , Membrane Transport Proteins , NF-kappa B , Transcription Factor TFIIIA , Zebrafish Proteins , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Genomics , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Cells ; 11(15)2022 07 25.
Article in English | MEDLINE | ID: mdl-35892592

ABSTRACT

The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Guanine Nucleotide Exchange Factors , Cell Line , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , Organoids/metabolism , Signal Transduction
7.
Cells ; 11(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35011698

ABSTRACT

Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Drug Discovery/methods , Humans , Mutation , Protein Folding
8.
J Mol Biol ; 434(5): 167436, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34990652

ABSTRACT

An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.


Subject(s)
Anoctamin-1 , Cystic Fibrosis , Neoplasm Proteins , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Calcium/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Knockdown Techniques , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , RNA, Small Interfering/genetics
9.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884866

ABSTRACT

SLC26A9, a constitutively active Cl- transporter, has gained interest over the past years as a relevant disease modifier in several respiratory disorders including Cystic Fibrosis (CF), asthma, and non-CF bronchiectasis. SLC26A9 contributes to epithelial Cl- secretion, thus preventing mucus obstruction under inflammatory conditions. Additionally, SLC26A9 was identified as a CF gene modifier, and its polymorphisms were shown to correlate with the response to drugs modulating CFTR, the defective protein in CF. Here, we aimed to investigate the relationship between SLC26A9 and CFTR, and its role in CF pathogenesis. Our data show that SLC26A9 expression contributes to enhanced CFTR expression and function. While knocking-down SLC26A9 in human bronchial cells leads to lower wt- and F508del-CFTR expression, function, and response to CFTR correctors, the opposite occurs upon its overexpression, highlighting SLC26A9 relevance for CF. Accordingly, F508del-CFTR rescue by the most efficient correctors available is further enhanced by increasing SLC26A9 expression. Interestingly, SLC26A9 overexpression does not increase the PM expression of non-F508del CFTR traffic mutants, namely those unresponsive to corrector drugs. Altogether, our data indicate that SLC26A9 stabilizes CFTR at the ER level and that the efficacy of CFTR modulator drugs may be further enhanced by increasing its expression.


Subject(s)
Antiporters/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Sulfate Transporters/metabolism , Aminophenols/pharmacology , Aminopyridines/pharmacology , Antiporters/genetics , Benzodioxoles/pharmacology , Bronchi/cytology , Cell Line , Cell Membrane/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , Indoles/pharmacology , Molecular Targeted Therapy/methods , Mutation , Organ Culture Techniques , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Sulfate Transporters/genetics , Zonula Occludens-1 Protein/metabolism
10.
J Exp Pharmacol ; 13: 693-723, 2021.
Article in English | MEDLINE | ID: mdl-34326672

ABSTRACT

Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.

11.
J Pers Med ; 11(5)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065744

ABSTRACT

As highly effective CFTR modulator therapies (HEMT) emerge, there is an unmet need to find effective drugs for people with CF (PwCF) with ultra-rare mutations who are too few for classical clinical trials and for whom there are no drug discovery programs. Therefore, biomarkers reliably predicting the benefit from CFTR modulator therapies are essential to find effective drugs for PwCF through personalized approaches termed theranostics. Here, we assess CFTR basal function and the individual responses to CFTR modulators in primary human nasal epithelial (pHNE) cells from PwCF carrying rare mutations and compare these measurements with those in native rectal biopsies and intestinal organoids, respectively, in the same individual. The basal function in pHNEs shows good correlation with CFTR basal function in rectal biopsies. In parallel, CFTR rescue in pHNEs by CFTR modulators correlates to that in intestinal organoids. Altogether, results show that pHNEs are a bona fide theranostic model to assess CFTR rescue by CFTR modulator drugs, in particular for PwCF and rare mutations.

12.
Bioinformatics ; 36(24): 5686-5694, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33367496

ABSTRACT

MOTIVATION: The forskolin-induced swelling (FIS) assay has become the preferential assay to predict the efficacy of approved and investigational CFTR-modulating drugs for individuals with cystic fibrosis (CF). Currently, no standardized quantification method of FIS data exists thereby hampering inter-laboratory reproducibility. RESULTS: We developed a complete open-source workflow for standardized high-content analysis of CFTR function measurements in intestinal organoids using raw microscopy images as input. The workflow includes tools for (i) file and metadata handling; (ii) image quantification and (iii) statistical analysis. Our workflow reproduced results generated by published proprietary analysis protocols and enables standardized CFTR function measurements in CF organoids. AVAILABILITY AND IMPLEMENTATION: All workflow components are open-source and freely available: the htmrenamer R package for file handling https://github.com/hmbotelho/htmrenamer; CellProfiler and ImageJ analysis scripts/pipelines https://github.com/hmbotelho/FIS_image_analysis; the Organoid Analyst application for statistical analysis https://github.com/hmbotelho/organoid_analyst; detailed usage instructions and a demonstration dataset https://github.com/hmbotelho/FIS_analysis. Distributed under GPL v3.0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

13.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008443

ABSTRACT

Most of the ~2100 CFTR variants so far reported are very rare and still uncharacterized regarding their cystic fibrosis (CF) disease liability. Since some may respond to currently approved modulators, characterizing their defect and response to these drugs is essential. Here we aimed characterizing the defect associated with four rare missense (likely Class II) CFTR variants and assess their rescue by corrector drugs. We produced CFBE cell lines stably expressing CFTR with W57G, R560S, H1079P and Q1100P, assessed their effect upon CFTR expression and maturation and their rescue by VX-661/VX-445 correctors. Results were validated by forskolin-induced swelling assay (FIS) using intestinal organoids from individuals bearing these variants. Finally, knock-down (KD) of genes previously shown to rescue F508del-CFTR was assessed on these mutants. Results show that all the variants preclude the production of mature CFTR, confirming them as Class II mutations. None of the variants responded to VX-661 but the combination rescued H1079P- and Q1100P-CFTR. The KD of factors that correct F508del-CFTR retention only marginally rescued R560S- and H1079P-CFTR. Overall, data evidence that Class II mutations induce distinct molecular defects that are neither rescued by the same corrector compounds nor recognized by the same cellular machinery, thus requiring personalized drug discovery initiatives.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation/genetics , Benzodioxoles/pharmacology , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Female , Humans , Indoles/pharmacology , Male , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology
14.
STAR Protoc ; 1(1): 100019, 2020 06 19.
Article in English | MEDLINE | ID: mdl-33111074

ABSTRACT

This protocol describes the isolation, handling, culture of, and experiments with human colon stem cell organoids in the context of cystic fibrosis (CF). In human colon organoids, the function of cystic fibrosis transmembrane conductance regulator (CFTR) protein and its rescue by CFTR modulators can be quantified using the forskolin-induced swelling assay. Implementation procedures and validation experiments are described for six CF human colon organoid lines, and representative CFTR genotypes are tested for basal CFTR function and response to CFTR-modulating drugs. For complete details on the use and execution of this protocol, please refer to Dekkers et al (2016) and Berkers and van Mourik (2019).


Subject(s)
Biological Assay/methods , Colforsin/pharmacology , Colon , Cystic Fibrosis/metabolism , Organoids , Cells, Cultured , Colon/drug effects , Colon/metabolism , Edema , Humans , Organoids/drug effects , Organoids/metabolism , Reproducibility of Results
15.
Cell Death Dis ; 11(10): 920, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106471

ABSTRACT

Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial-mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-ß1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Nuclear Proteins/metabolism , Oncogenes/genetics , Twist-Related Protein 1/metabolism , Cells, Cultured , Epithelial-Mesenchymal Transition , HEK293 Cells , Humans
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165905, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32730979

ABSTRACT

BACKGROUND: For most of the >2000 CFTR gene variants reported, neither the associated disease liability nor the underlying basic defect are known, and yet these are essential for disease prognosis and CFTR-based therapeutics. Here we aimed to characterize two ultra-rare mutations - 1717-2A > G (c.1585-2A > G) and S955P (p.Ser955Pro) - as case studies for personalized medicine. METHODS: Patient-derived rectal biopsies and intestinal organoids from two individuals with each of these mutations and F508del (p.Phe508del) in the other allele were used to assess CFTR function, response to modulators and RNA splicing pattern. In parallel, we used cellular models to further characterize S955P independently of F508del and to assess its response to CFTR modulators. RESULTS: Results in both rectal biopsies and intestinal organoids from both patients evidence residual CFTR function. Further characterization shows that 1717-2A > G leads to alternative splicing generating <1% normal CFTR mRNA and that S955P affects CFTR gating. Finally, studies in organoids predict that both patients are responders to VX-770 alone and even more to VX-770 combined with VX-809 or VX-661, although to different levels. CONCLUSION: This study demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs to patients with rare mutations.


Subject(s)
Cystic Fibrosis/genetics , Mutation/genetics , Precision Medicine/methods , Alleles , Aminophenols/therapeutic use , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Blotting, Western , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Electrophysiology , Fluorescent Antibody Technique , Genotype , Humans , Indoles/therapeutic use , Quinolones/therapeutic use
17.
Biochem Pharmacol ; 180: 114133, 2020 10.
Article in English | MEDLINE | ID: mdl-32628927

ABSTRACT

Despite progress in developing pharmacotherapies to rescue F508del-CFTR, the most prevalent Cystic Fibrosis (CF)-causing mutation, individuals homozygous for this mutation still face several disease-related symptoms. Thus, more potent compound combinations are still needed. Here, we investigated the mechanism of action (MoA) of RDR01752, a novel F508del-CFTR trafficking corrector. F508del-CFTR correction by RDR01752 was assessed by biochemical, immunofluorescence microscopy and functional assays in cell lines and in intestinal organoids. To determine the MoA of RDR01752, we assessed its additive effects to those of genetic revertants of F508del-CFTR, the FDA-approved corrector drugs VX-809 and VX-661, and low temperature. Our data demonstrated that RDR01752 rescues F508del-CFTR processing and plasma membrane (PM) expression to similar levels of VX-809 in cell lines, although RDR01752 produced lower functional rescue. However, in functional assays using intestinal organoids (F508del/F508del), RDR01752, VX-809 and VX-661 had similar efficacy. RDR01752 demonstrated additivity to revertants 4RK and G550E, but not to R1070W, as previously shown for VX-809. RDR01752 was also additive to low temperature. Co-treatment of RDR01752 and VX-809 did not increase F508del-CFTR PM expression and function compared to each corrector alone. The lack of additivity of RDR01752 with the genetic revertant R1070W suggests that this compound has the same effect as the insertion of tryptophan at 1070, i.e., filling the pocket at the NBD1:ICL4 interface in F508del-CFTR, similarly to VX-809. Combination of RDR01752 with correctors mimicking the rescue by revertants G550E or 4RK could thus maximize rescue of F508del-CFTR.


Subject(s)
Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/pharmacology , Bronchi/drug effects , Bronchi/metabolism , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Discovery , Humans , Mutation , Organoids/drug effects , Organoids/metabolism , Protein Transport/drug effects , Protein Transport/genetics
18.
Front Physiol ; 11: 604580, 2020.
Article in English | MEDLINE | ID: mdl-33424627

ABSTRACT

Most cases of Cystic Fibrosis (CF) are diagnosed early in life. However, people with atypical CF forms pose diagnosis dilemmas, requiring laboratory support for diagnosis confirmation/exclusion. Ex vivo analysis of fresh rectal biopsies by Ussing chamber has been the best discriminant biomarker for CF diagnosis/prognosis so far. Here we aimed to evaluate different electrophysiological parameters from Ussing chamber analysis of rectal biopsies from people with CF (PwCF) to establish the one with highest correlations with clinical features as the best CF diagnosis/prognosis biomarker. We analyzed measurements of CFTR-mediated Cl- secretion in rectal biopsies from 143 individuals (∼592 biopsies), the largest cohort so far analyzed by this approach. New parameters were analyzed and compared with the previous biomarker, i.e., the IBMX (I)/Forskolin (F)/Carbachol (C)-stimulated short-circuit current (I'sc-I/F/C). Correlations with clinical features showed that the best parameter corresponded to voltage measurements of the I/F + (I/F/CCH) response (VI/F+I/F/C), with higher correlations vs. I'sc-I/F/C for: sweat chloride (59 vs. 52%), fecal elastase (69 vs. 55%) and lung function, measured by FEV1 (27 vs. 20%). Altogether data show that VI/F+I/F/C is the most sensitive, reproducible, and robust predictive biomarker for CF diagnosis/prognosis effectively discriminating classical, atypical CF and non-CF groups.

19.
J Cyst Fibros ; 18(2): 182-189, 2019 03.
Article in English | MEDLINE | ID: mdl-30030066

ABSTRACT

BACKGROUND: New therapies modulating defective CFTR have started to hit the clinic and others are in trial or under development. The endeavour of drug discovery for CFTR protein rescue is however difficult one since over 2000 mutations have been reported. For most of these, especially the rare ones, the associated defects, the respective functional class and their responsiveness to available modulators are still unknown. Our aim here was to characterize the rare R560S mutation using patient-derived materials (rectal biopsies and intestinal organoids) from one CF individual homozygous for this mutation, in parallel with cellular models expressing R560S-CFTR and to assess the functional and biochemical responses to CFTR modulators. METHODS: Intestinal organoids were prepared from rectal biopsies and analysed by RT-PCR (to assess CFTR mRNA), by Western blot (to assess CFTR protein) and by forskolin-induced swelling (FIS) assay. A novel cell line expressing R560S-CFTR was generated by stably transducing the CFBE parental cell line and used to assess R560S-CFTR processing and function. Both intestinal organoids and the cellular model were used to assess efficacy of CFTR modulators in rescuing this mutation. RESULTS: Our results show that: R560S does not affect CFTR mRNA splicing; R560S affects CFTR protein processing, totally abrogating the production of its mature form; R560S-CFTR evidences no function as a Cl- channel; and none of the modulators tested rescued R560S-CFTR processing or function. CONCLUSION: Altogether, these results indicate that R560S is a class II mutation. However, unlike F508del, it cannot be rescued by any of the CFTR modulators tested.


Subject(s)
Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Membrane Transport Modulators , Organoids , Biological Assay/methods , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Chloride Channels/physiology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Membrane Transport Modulators/classification , Membrane Transport Modulators/pharmacology , Models, Biological , Mutation , Organoids/drug effects , Organoids/metabolism , RNA Splicing , Rectum/pathology , Treatment Outcome
20.
PLoS One ; 13(5): e0197543, 2018.
Article in English | MEDLINE | ID: mdl-29782529

ABSTRACT

Paget's disease of bone (PDB) is a chronic bone disorder and although genetic factors appear to play an important role in its pathogenesis, to date PDB causing mutations were identified only in the Sequestosome 1 (SQSTM1) gene at the PDB3 locus. PDB6 locus, also previously linked to PDB, contains several candidate genes for metabolic bone diseases. We focused our analysis in the most significantly associated variant with PDB, within the Optineurin (OPTN) gene, i.e. the common variant rs1561570. Although it was previously shown to be strongly associated with PDB in several populations, its contribution to PDB pathogenesis remains unclear. In this study we have shown that rs1561570 may contribute to PDB since its T allele results in the loss of a methylation site in patients' DNA, leading to higher levels of OPTN gene expression and a corresponding increase in protein levels in patients' osteoclasts. This increase in OPTN expression leads to higher levels of NF-κB translocation into the nucleus and increasing expression of its target genes, which may contribute to the overactivity of osteoclasts observed in PDB. We also reported a tendency for a more severe clinical phenotype in the presence of a haplotype containing the rs1561570 T allele, which appear to be re-enforced with the presence of the SQSTM1/P392L mutation. In conclusion, our work provides novel insight towards understanding the functional effects of this variant, located in OPTN intron 7, and its implication in the contribution to PDB pathogenesis.


Subject(s)
Osteitis Deformans/genetics , Transcription Factor TFIIIA/genetics , Active Transport, Cell Nucleus/genetics , Alleles , Autophagy/genetics , Bone Resorption/genetics , Cell Cycle Proteins , Cell Differentiation/genetics , Cell Line , DNA Methylation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Haplotypes , Humans , Introns , Membrane Transport Proteins , Mutation , NF-kappa B/metabolism , Osteitis Deformans/etiology , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Polymorphism, Single Nucleotide , Sequestosome-1 Protein/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...