Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Contam Hydrol ; 251: 104089, 2022 12.
Article in English | MEDLINE | ID: mdl-36223689

ABSTRACT

Biosolids are an important resource for agricultural practice but have recently received increased focus as a potential source of per- and polyfluoroalkyl substances (PFAS) in the environment. Few studies have investigated the transport of PFAS through the unsaturated zone under conditions relevant to biosolids application sites. Herein, the unsaturated flow and transport model HYDRUS is used to evaluate the leaching of per- and polyfluoroalkyl substances (PFAS) from land-applied biosolids used in agricultural practice to determine the impacts of PFAS leaching on underlying groundwater resources. This numerical case study was based on conditions and operations at two test sites in central Illinois where biosolids were applied at agronomic rates and where PFAS contents and desorption characteristics were previously characterized. Each site possessed different vadose zone soil textural heterogeneity. Simulations were performed under actual present-day meteorological conditions and extended 150 years beyond the initial biosolids application. These long-term simulations demonstrate how soil equilibrium sorption/desorption processes within the biosolids-amended surface soils effectively control the transport rate of individual PFAS to groundwater. Air-water interfacial (AWI) adsorption, which is sometimes considered to be a significant source of PFAS retention in vadose zone soils, was observed to have minimal impacts on PFAS leaching rates within the biosolids-amended surface soils at these sites. Additionally, the impact of AWI adsorption was found to be most significant for PFAS transport within the underlying vadose zone soils when these soils were more texturally homogeneous and considerably less significant within the texturally heterogeneous soils represented herein. The results of multiple long-term simulations were used to develop an empirical equation that relates predicted maximum PFAS pore-water concentrations reaching the saturated zone with changes in PFAS concentrations in the biosolids-amended soil for various biosolids re-application events. This approach is shown to be very useful in developing site-specific PFAS soil screening levels and/or maximum leachate levels for PFAS in support of establishing best management practices (BMPs) for land application of biosolids.


Subject(s)
Fluorocarbons , Groundwater , Soil Pollutants , Biosolids , Soil , Soil Pollutants/analysis , Water
2.
J Contam Hydrol ; 247: 103984, 2022 05.
Article in English | MEDLINE | ID: mdl-35279485

ABSTRACT

When performing calculations or numerical simulations for the fate and transport of PFAS and other surface-active solutes in the vadose zone, accurately representing the relationship between the area of the air-water interfaces (Aaw) as a function of water saturation (Sw), and changes in that relationship resulting from changes in soil texture, are equally important as accurately characterizing interfacial adsorption coefficients and the concentration dependence for PFAS solutes. This is true because the magnitude of the Aaw directly governs the degree of air-water interfacial adsorption, which contributes to the transport retardation of these solutes within unsaturated porous media. Herein, a well-known thermodynamic-based model for predicting the Aaw-Sw relationship is evaluated through comparisons to literature data collected using various measurement techniques for model sands and a limited number of soils using data collected from the current published literature. This predictive model, herein termed the Leverett thermodynamic model (LTM), relies on the characterization of the soil-water retention curve (SWRC) for a given soil, using the van Genuchten (VG) equation for the pressure head-vs-Sw relationship. Therefore, methods to estimate the VG equation parameters are also compared as to the Aaw-Sw relationships predicted. Comparisons suggest that the LTM provides the best estimate of the actual Aaw-Sw relationships for water containing non-surface-active solutes. Because PFAS solutes are also surface-active, Aaw measurement methods utilizing surface-active tracers are considered to provide the most accurate representation of the Aaw-Sw relationship for these solutes. Differences between Aaw-Sw relationships derived from tracer methods and the LTM are described in relation to media surface roughness effects. Based on the available literature data, a practical empirical model is proposed to adjust the LTM prediction to account for the effects of surface roughness on the magnitude of the Aaw for surface-active solutes. Finally, example retention calculations are performed to demonstrate the sensitivity of the predicted Aaw-Sw relationship on the vadose zone transport of of a representative PFAS, perfluorooctane sulfonate.


Subject(s)
Fluorocarbons , Adsorption , Porosity , Soil , Water
3.
J Contam Hydrol ; 236: 103731, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33183849

ABSTRACT

Surface tension isotherms and calculated air-water interfacial (AWI) adsorption data are presented for solution mixtures of per- and polyfluoroalkyl substances (PFAS), specifically a series of binary and one ternary mixtures of homologous linear perfluorocarboxylic acids (PFCAs) in a simulated groundwater, and two 8-component mixtures containing both PFCAs and linear perfluoroalkane sulfonates (PFSAs). In all cases, non-ideal competitive adsorption was observed that favored the most surface-active component(s) of the solution mixture. The multi-component extended Langmuir (EL) isotherm model was observed to accurately predict the competitive adsorption observed in the binary and ternary PFCA solution mixtures. However, the predictive utility of the EL model was observed to diminish when mixtures contained both PFCAs and PFSAs, which differ in their hydrophile structure, resulting in overpredictions and underpredictions of the AWI adsorption isotherms derived from measured data depending on the specific components present in the solution mixtures. Observations indicate that the individual component adsorptive affinities for the AWI can change in response to competitive preferential adsorption as their solution concentrations increase that is not being captured by the EL model. Our results demonstrate that alternative mathematical models are needed that support concentration dependent affinity coefficients for non-similar mixtures of PFAS, such that the transport of individual target PFAS components within a larger mixture of components can be accurately predicted across a wider range of solution concentration.


Subject(s)
Fluorocarbons , Groundwater , Adsorption , Surface Tension , Water
4.
J Contam Hydrol ; 223: 103472, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30979513

ABSTRACT

The release and transport of linear perfluorocarboxylic acids (PFCA) within the vadose-zone beneath per- and polyfluoroalkyl substance (PFAS)- and non-aqueous phase liquid (NAPL)-contaminated source areas is influenced by multi-phase interfacial retention phenomena. Conceptually, interfacial adsorption results in retardation of PFCA velocities in subsurface multiphase systems. However, site hydrochemical factors influencing interfacial adsorption are not yet fully elucidated. Herein, air-water and NAPL-water interfacial tension isotherms were prepared for six homologous PFCAs of environmental significance for deionized water and five synthetic groundwaters of increasing ionic strength. The isotherms were successfully modeled by the Langmuir-Szyskowski equation and parameters used to fit the measured data are provided. Concentration-dependent interfacial adsorption coefficients and retardation factors are also provided for each PFCA and ionic strength condition and are evaluated to assess their significance. Simplifying relationships for predicting interfacial adsorption based on PFCA chain length were found to be less appropriate for natural groundwaters that contain a mixture of dissolved divalent and monovalent ions. Air-water interfacial (AWI) adsorption increased in a threshold manner with ionic strength from 0 to 6 mM, whereafter further adsorption was marginal. PFCA retention within water-unsaturated porous media is shown to depend on a number of inter-related factors and conditions that complicate the use of retardation factors within analytical models typically used for predicting transport rates under field conditions. Numerical simulation is thus necessary to model fundamental fate and transport processes. Mathematical relationships for incorporating interfacial adsorption in future and existing unsaturated flow and transport models are described.


Subject(s)
Groundwater , Water Pollutants, Chemical , Adsorption , Porosity , Surface Tension
5.
J Contam Hydrol ; 199: 36-49, 2017 04.
Article in English | MEDLINE | ID: mdl-28341384

ABSTRACT

The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/chemistry , Oxidants/chemistry , Polymers/chemistry , Water Pollutants, Chemical/analysis , Manganese Compounds/chemistry , Models, Theoretical , North Carolina , Oxidation-Reduction , Oxides/chemistry , Phosphates/chemistry , Seasons , Sodium Compounds/chemistry , Viscosity
6.
J Contam Hydrol ; 136-137: 117-30, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22771973

ABSTRACT

Laboratory experiments and numerical simulations were performed to critically evaluate the utility of viscosity modification as a technique to improve injected fluid sweep efficiencies within texturally heterogeneous geomedia. The objective of this technique is to improve the subsurface distribution of fluids by mitigating the potential for preferential flow and bypassing of lower permeability media that can limit the effectiveness of in situ remediation applications. The results of two-dimensional sand tank experiments and numerical simulations demonstrate that viscosity modification, via polymer amendment, can improve sweep efficiencies within layered heterogeneous structures by up to 90%, relative to the no-polymer case. The amount of sweep efficiency improvement depended on a number of system variables, including: the degree of layering, the relative positioning of layers within the system, the permeability contrast between layers, fluid viscosity, and the rheological character of the fluid utilized. Although significant sweep-efficiency improvement was observed, achieving 100% sweep in one pore volume was only possible when the permeability contrast was less than a factor of four, regardless of the viscosity and the rheological character of the fluid.


Subject(s)
Models, Theoretical , Polymers/chemistry , Rheology , Surface-Active Agents/chemistry , Viscosity
7.
Environ Sci Technol ; 42(24): 9296-301, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19174907

ABSTRACT

Polymer floods provide a promising method to more effectively deliver conventional groundwater treatment agents to organic contaminants distributed within heterogeneous aquifer systems. Combinations of nontoxic polymers (xanthan and hydrolyzed polyacrylamide) and common chemical oxidants (potassium permanganate and sodium persulfate) were investigated to determine the suitability of these mixtures for polymer-enhanced in situ chemical oxidation applications. Oxidant demand and solution viscosity were utilized as initial measures of chemical compatibility. After 72 h of reaction with both test oxidants, solution viscosities in mixtures containing hydrolyzed polyacrylamide were decreased by more than 90% (final viscosities approximately 2 cP), similar to the 95% viscosity loss (final viscosities approximately 1 cP, near that of water) observed in xanthan/persulfate experiments. In contrast, xanthan solutions exposed to potassium permanganate preserved 60-95% of initial viscosity after 72 h. Permanganate depletion in xanthan-containing experiments ranged from 2% to 24% over the same test period. Although oxidant consumption in xanthan/permanganate solutions appeared to be correlated with increasing xanthan concentrations, solutions of up to 2000 mg/L xanthan did not inhibit permanganate from oxidizing a dissolved-phase test contaminant (tetrachloroethene, PCE) in xanthan solution. These advantageous characteristics (high viscosity retention, moderate oxidant demand, and lack of competitive effects on PCE oxidation rate) render xanthan/permanganate the most compatible polymer/oxidant combination of those tested for remediation by polymer-enhanced chemical oxidation.


Subject(s)
Environmental Restoration and Remediation , Oxidants/chemistry , Polymers/chemistry , Soil , Water Supply , Manganese Compounds/chemistry , Oxidation-Reduction , Oxides/chemistry , Potassium Permanganate/chemistry , Time Factors , Viscosity , Water Pollutants/chemistry , Water Pollutants/isolation & purification
8.
Environ Sci Technol ; 36(7): 1613-9, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-12004787

ABSTRACT

A series of gas (vapor)-advecting water-unsaturated column experiments using a low organic content (f(oc)) silica sand was conducted to determine mass distributions of chlorinated-volatile hydrophobic organic compounds (C-VHOCs) in a natural sorbent system. C-VHOCs used were trichloroethene (TCE), tetrachloroethene (PCE), chlorobenzene (CB), and 1,3-dichlorobenzene (DCB). Four volumetric water contents (theta(w) = 0.07, 0.12, 0.17, 0.20) and several influent gas-phase C-VHOC (solute) concentrations were considered. The method of temporal first moments was applied to complete breakthrough curve data to determine total C-VHOC gas-phase retardation and associated gas-phase C-VHOC mass fraction. Results were compared to an equilibrium partitioning advective-dispersive formulation of total gas-phase retardation. Literature-derived values of Henry's law constants and independent measurements of gas/water interface areal extent and interface phase adsorption allowed quantification of C-VHOC mass fractions in the aqueous and gas/water interface phases. Unaccounted C-VHOC mass, derived from comparison of measured C-VHOC retardation to independent phase prediction, was attributed to solid-phase sorption. Results indicate that for all conditions tested, gas/water interfacial adsorption exhibited only a small effect on C-VHOC vapor retardation (accounting for < or = 10% of the total C-VHOC distributions). Solid-phase association was the dominant uptake mechanism, accounting for 46-91% of the total C-VHOC mass in the porous system. Evaluation of the solid-phase C-VHOC uptake results in terms of a modified form of the Dubinin-Radushkevich (DR) isotherm equation provided strong evidence supporting the mechanism of pore-filling in this natural, low f(oc) sorbent.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Models, Theoretical , Soil Pollutants/analysis , Solvents/chemistry , Adsorption , Gases , Silicon Dioxide , Volatilization , Water
SELECTION OF CITATIONS
SEARCH DETAIL