Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
3.
Kidney Int ; 102(3): 577-591, 2022 09.
Article in English | MEDLINE | ID: mdl-35644283

ABSTRACT

Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked ß-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.


Subject(s)
Adaptor Proteins, Signal Transducing , Polycystic Kidney, Autosomal Dominant , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Body Weight , Cilia/pathology , Disease Models, Animal , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/pathology , Kidney Tubules , Mice , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
4.
Cell Mol Life Sci ; 78(7): 3743-3762, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33683377

ABSTRACT

Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2-/-; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2-/-; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2-/-; Thm1aln/+ small phenotype, and further revealed that Thm2-/-; Gli2+/- mice have small stature. In Thm2-/-; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Chondrocytes/pathology , Chondrogenesis , Hedgehog Proteins/metabolism , Osteoblasts/pathology , Osteogenesis , Animals , Animals, Newborn , Cell Differentiation , Chondrocytes/metabolism , Cilia , Female , Hedgehog Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Signal Transduction
5.
FASEB J ; 34(1): 148-160, 2020 01.
Article in English | MEDLINE | ID: mdl-31914634

ABSTRACT

Deletion of murine Thm1, an intraflagellar transport A (IFT-A) component that mediates ciliary protein trafficking, causes hyperphagia, obesity, and metabolic syndrome. The role of Thm1 or IFT-A in adipogenesis and insulin sensitivity is unknown. Here, we report that Thm1 knockdown in 3T3-L1 pre-adipocytes promotes adipogenesis and enhances insulin sensitivity in vitro. Yet, pre-obese Thm1 conditional knockout mice show systemic insulin resistance. While insulin-induced AKT activation in Thm1 mutant adipose depots and skeletal muscle are similar to those of control littermates, an attenuated insulin response arises in the mutant liver. Insulin treatment of control and Thm1 mutant primary hepatocytes results in similar AKT activation. Moreover, pair-feeding Thm1 conditional knockout mice produces a normal insulin response, both in the liver and systemically. Thus, hyperphagia caused by a cilia defect, induces hepatic insulin resistance via a non-cell autonomous mechanism. In turn, hepatic insulin resistance drives systemic insulin resistance prior to an obese phenotype. These data demonstrate that insulin signaling across cell types is regulated differentially, and that the liver is particularly susceptible to hyperphagia-induced insulin resistance and a critical determinant of systemic insulin resistance.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Hyperphagia/metabolism , Insulin Resistance/physiology , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing/genetics , Adipocytes , Adipogenesis , Animals , Cytoskeletal Proteins/genetics , Genetic Predisposition to Disease , Hepatocytes/metabolism , Insulin/metabolism , Insulin/pharmacology , Mice , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
6.
Methods Cell Biol ; 153: 205-229, 2019.
Article in English | MEDLINE | ID: mdl-31395380

ABSTRACT

Primary cilia are singular, sensory organelles that extend from the plasma membrane of most quiescent mammalian cells. These slender, microtubule-based organelles receive and transduce extracellular cues and regulate signaling pathways. Primary cilia are critical to the development and function of many tissue types, and mutation of ciliary genes causes multi-system disorders, termed ciliopathies. Notably, renal cystic disease is one of the most common clinical features of ciliopathies, highlighting a central role for primary cilia in the kidney. Additionally, acute kidney injury and chronic kidney disease are associated with altered primary cilia lengths on renal epithelial cells, suggesting ciliary dynamics and renal physiology are linked. Here we describe methods to examine primary cilia in kidney tissue and in cultured renal cells. We include immunofluorescence and scanning electron microscopy to determine ciliary localization of proteins and cilia structure. Further, we detail cellular assays to measure cilia assembly and disassembly, which regulate cilia length.


Subject(s)
Cilia/ultrastructure , Epithelial Cells/ultrastructure , Intravital Microscopy/methods , Kidney/ultrastructure , Microscopy, Electron, Scanning/methods , Animals , Cells, Cultured , Cilia/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fluorescent Antibody Technique/instrumentation , Fluorescent Antibody Technique/methods , Gene Knockdown Techniques/instrumentation , Gene Knockdown Techniques/methods , HEK293 Cells , Histocytological Preparation Techniques/instrumentation , Histocytological Preparation Techniques/methods , Humans , Intravital Microscopy/instrumentation , Kidney/cytology , Kidney/metabolism , Mice , Microscopy, Electron, Scanning/instrumentation , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , RNA, Small Interfering , Signal Transduction
7.
Sci Rep ; 8(1): 4985, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563577

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutation of PKD1 or PKD2, which encode polycystin 1 and 2, respectively. The polycystins localize to primary cilia and the functional loss of the polycystin complex leads to the formation and progressive growth of fluid-filled cysts in the kidney. The pathogenesis of ADPKD is complex and molecular mechanisms connecting ciliary dysfunction to renal cystogenesis are unclear. Primary cilia mediate Hedgehog signaling, which modulates cell proliferation and differentiation in a tissue-dependent manner. Previously, we showed that Hedgehog signaling was increased in cystic kidneys of several PKD mouse models and that Hedgehog inhibition prevented cyst formation in embryonic PKD mouse kidneys treated with cAMP. Here, we show that in human ADPKD tissue, Hedgehog target and activator, Glioma 1, was elevated and localized to cyst-lining epithelial cells and to interstitial cells, suggesting increased autocrine and paracrine Hedgehog signaling in ADPKD, respectively. Further, Hedgehog inhibitors reduced basal and cAMP-induced proliferation of ADPKD cells and cyst formation in vitro. These data suggest that Hedgehog signaling is increased in human ADPKD and that suppression of Hedgehog signaling can counter cellular processes that promote cyst growth in vitro.


Subject(s)
Cilia/pathology , Hedgehog Proteins/antagonists & inhibitors , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Aged , Animals , Benzamides/pharmacology , Benzimidazoles/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cilia/metabolism , Cyclohexylamines/pharmacology , Epithelial Cells , Hedgehog Proteins/metabolism , Humans , Kidney/cytology , Mice , Middle Aged , Polycystic Kidney, Autosomal Dominant/genetics , Primary Cell Culture , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Thiophenes/pharmacology , Up-Regulation , Zinc Finger Protein GLI1/metabolism
8.
Dis Model Mech ; 9(7): 789-98, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27482817

ABSTRACT

Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hyperphagia/complications , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Obesity/etiology , Obesity/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Cilia/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Fatty Liver/complications , Fatty Liver/pathology , Female , Gene Expression Regulation , Glucose/metabolism , Hyperinsulinism/complications , Hyperinsulinism/genetics , Hyperinsulinism/pathology , Liver/pathology , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/pathology , Mice, Knockout , Neuropeptides/genetics , Neuropeptides/metabolism , Obesity/genetics , Obesity/pathology
9.
J Am Soc Nephrol ; 25(10): 2201-12, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24700869

ABSTRACT

Renal cystic diseases are a leading cause of renal failure. Mutations associated with renal cystic diseases reside in genes encoding proteins that localize to primary cilia. These cystoproteins can disrupt ciliary structure or cilia-mediated signaling, although molecular mechanisms connecting cilia function to renal cystogenesis remain unclear. The ciliary gene, Thm1(Ttc21b), negatively regulates Hedgehog signaling and is most commonly mutated in ciliopathies. We report that loss of murine Thm1 causes cystic kidney disease, with persistent proliferation of renal cells, elevated cAMP levels, and enhanced expression of Hedgehog signaling genes. Notably, the cAMP-mediated cystogenic potential of Thm1-null kidney explants was reduced by genetically deleting Gli2, a major transcriptional activator of the Hedgehog pathway, or by culturing with small molecule Hedgehog inhibitors. These Hedgehog inhibitors acted independently of protein kinase A and Wnt inhibitors. Furthermore, simultaneous deletion of Gli2 attenuated the renal cystic disease associated with deletion of Thm1. Finally, transcripts of Hedgehog target genes increased in cystic kidneys of two other orthologous mouse mutants, jck and Pkd1, and Hedgehog inhibitors reduced cystogenesis in jck and Pkd1 cultured kidneys. Thus, enhanced Hedgehog activity may have a general role in renal cystogenesis and thereby present a novel therapeutic target.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Disease Models, Animal , Hedgehog Proteins/metabolism , Kidney Diseases, Cystic/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Hedgehog Proteins/antagonists & inhibitors , In Vitro Techniques , Kidney Diseases, Cystic/genetics , Male , Mice , Mice, Knockout , TRPP Cation Channels/genetics , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...