Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 843784, 2022.
Article in English | MEDLINE | ID: mdl-35360245

ABSTRACT

Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and the appearance of white patches throughout the body caused by significant apoptosis of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate several psychosocial disorders, drastically reducing patients' quality of life. Emerging evidence has shown that vitiligo is associated with several genetic polymorphisms related to auto-reactivity from the immune system to melanocytes. Melanocytes from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by defective mitochondria besides a poor endogenous antioxidant system (EAS). This redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo severity has been also associated with increasing the prevalence and incidence of metabolic syndrome (MetS) or associated disorders such as insulin resistance and hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an important trigger for the development and severity of vitiligo disease. This paper will discuss the relationship between the immune system and epidermal melanocytes and their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo research, physical exercise (PE) immunology, and redox system literature, we will also propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo disease progression. We will present evidence that chronic PE can change the balance of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial structure and function (resulting in the decrease of OS). Finally, we will highlight clinically relevant markers that can be analyzed in a new research avenue to test the potential applicability of chronic PE in vitiligo disease.

2.
Neuropharmacology ; 71: 237-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23597507

ABSTRACT

Phα1ß toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1ß when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1ß on Ca²âº transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1ß reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²âº channel blocker) was effective only when administered intrathecally. Phα1ß, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²âº transients in DRG neurons. The simultaneous administration of Phα1ß and SB366791 inhibited the capsaicin-induced Ca²âº transients that were additive suggesting that they act through different targets. Moreover, Phα1ß did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1ß may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Disease Models, Animal , Ganglia, Spinal/drug effects , Membrane Transport Modulators/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Spider Venoms/therapeutic use , Analgesics, Non-Narcotic/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Signaling/drug effects , Capsaicin , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Insect Proteins/pharmacology , Insect Proteins/therapeutic use , Male , Membrane Transport Modulators/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Peptides/pharmacology , Peptides/therapeutic use , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spider Venoms/pharmacology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...