Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
J Cell Biochem ; 120(6): 9608-9623, 2019 06.
Article in English | MEDLINE | ID: mdl-30525230

ABSTRACT

Several molecules extracted from natural products exhibit different biological activities, such as ion channel modulation, activation of signaling pathways, and anti-inflammatory or antitumor activity. In this study, we tested the antitumor ability of natural compounds extracted from the Raputia praetermissa plant. Among the compounds tested, an alkaloid, here called compound S4 (4-Deoxyraputindole C), showed antitumor effects against human tumor lineages. Compound S4 was the most active against Raji, a lymphoma lineage, promoting cell death with characteristics that including membrane permeabilization, dissipation of the mitochondrial potential, increased superoxide production, and lysosomal membrane permeabilization. The use of cell death inhibitors such as Z-VAD-FMK (caspase inhibitor), necrostatin-1 (receptor-interacting serine/threonine-protein kinase 1 inhibitor), E-64 (cysteine peptidases inhibitor), and N-acetyl- L-cysteine (antioxidant) did not decrease compound S4-dependent cell death. Additionally, we tested the effect of cellular activity on adherent human tumor cells. The highest reduction of cellular activity was observed in A549 cells, a lung carcinoma lineage. In this lineage, the effect on the reduction of the cellular activity was due to cell cycle arrest, without plasma membrane permeabilization, loss of the mitochondrial potential or lysosomal membrane permeabilization. Compound S4 was able to inhibit cathepsin B and L by a nonlinear competitive (negative co-operativity) and simple-linear competitive inhibitions, respectively. The potency of inhibition was higher against cathepsin L. Compound S4 promoted cell cycle arrest at G 0 and G 2 phase, and increase the expression of p16 and p21 proteins. In conclusion, compound S4 is an interesting molecule against cancer, promoting cell death in the human lymphoma lineage Raji and cell cycle arrest in the human lung carcinoma lineage A549.


Subject(s)
Alkaloids/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Cathepsin B/metabolism , Cathepsin L/metabolism , Cell Line, Tumor , Cell Lineage/drug effects , Humans , Inhibitory Concentration 50 , Kinetics , Leukemia/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Necrosis , Rutaceae/chemistry
2.
Rev. bras. farmacogn ; 19(1a): 1-6, Jan.-Mar. 2009. ilus, tab
Article in English | LILACS | ID: lil-522411

ABSTRACT

The inhibitory activity of crude extracts of Meliaceae and Rutaceae plants on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) enzyme from Trypanosoma cruzi was evaluated at 100 μg/mL. Forty-six extracts were tested and fifteen of them showed significant inhibitory activity (IA percent > 50). The majority of the assayed extracts of Meliaceae plants (Cedrela fissilis, Cipadessa fruticosa and Trichilia ramalhoi) showed high ability to inhibit the enzymatic activity. The fractionation of the hexane extract from branches of C. fruticosa led to the isolation of three flavonoids: flavone, 7-methoxyflavone and 3',4',5',5,7-pentamethoxyflavone. The two last compounds showed high ability to inhibit the gGAPDH activity. Therefore, the assayed Meliaceae species could be considered as a promising source of lead compounds against Chagas' disease.


Nesse trabalho foi avaliada a atividade inibitória sobre a enzima glicossomal gliceraldeído-3-fosfato desidrogenase de T. cruzi (gGAPDH) de extratos vegetais oriundos de plantas das famílias Meliaceae e Rutaceae, na concentração de 100 μg/mL. Foram testados 46 extratos, dos quais 15 apresentaram atividade inibitória significativa ( por cento AI > 50). A maioria dos extratos de plantas da família Meliaceae (Cedrela fissilis, Cipadessa fruticosa e Trichilia ramalhoi) apresentou grande potencial em inibir a atividade enzimática. O fracionamento do extrato hexânico dos galhos de C. fruticosa permitiu o isolamento de três flavonóides: flavona, 7-metoxiflavona e 3',4',5',5,7-pentametoxiflavona. Os dois últimos foram ativos na inibição da atividade de gGAPDH. Desta forma, as três espécies de Meliaceae testadas podem ser consideradas promissoras na busca de compostos protótipos para o controle da doença de Chagas.

SELECTION OF CITATIONS
SEARCH DETAIL
...