Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
NPJ Vaccines ; 8(1): 140, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758790

ABSTRACT

The apicomplexan parasite Babesia bovis is responsible for bovine babesiosis, a poorly controlled tick-borne disease of global impact. The widely conserved gametocyte protein HAPLESS2/GCS1 (HAP2) is uniquely expressed on the surface of B. bovis sexual stage parasites and is a candidate for transmission-blocking vaccines (TBV). Here, we tested whether vaccination of calves with recombinant HAP2 (rHAP2) interferes with the transmission of B. bovis by competent ticks. Calves vaccinated with rHAP2 (n = 3), but not control animals (n = 3) developed antibodies specific to the vaccine antigen. Vaccinated and control animals were infested with Rhipicephalus microplus larvae and subsequently infected with virulent blood stage B. bovis parasites by needle inoculation, with all animals developing clinical signs of acute babesiosis. Engorged female ticks fed on the infected calves were collected for oviposition, hatching, and obtention of larvae. Transmission feeding was then conducted using pools of larvae derived from ticks fed on rHAP2-vaccinated or control calves. Recipient calves (n = 3) exposed to larvae derived from control animals, but none of the recipient calves (n = 3) challenged with larvae from ticks fed on rHAP2-vaccinated animals, developed signs of acute babesiosis within 11 days after tick infestation. Antibodies against B. bovis antigens and parasite DNA were found in all control recipient animals, but not in any of the calves exposed to larvae derived from HAP2-vaccinated animals, consistent with the absence of B. bovis infection via tick transmission. Overall, our results are consistent with the abrogation of parasite tick transmission in rHAP2-vaccinated calves, confirming this antigen as a prime TBV candidate against B. bovis.

2.
Sci Rep ; 11(1): 9301, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927329

ABSTRACT

Theileria equi is a widely distributed apicomplexan parasite that causes severe hemolytic anemia in equid species. There is currently no effective vaccine for control of the parasite and understanding the mechanism that T. equi utilizes to invade host cells may be crucial for vaccine development. Unlike most apicomplexan species studied to date, the role of micronemes in T. equi invasion of host cells is unknown. We therefore assessed the role of the T. equi claudin-like apicomplexan microneme protein (CLAMP) in the invasion of equine erythrocytes as a first step towards understanding the role of this organelle in the parasite. Our findings show that CLAMP is expressed in the merozoite and intra-erythrocytic developmental stages of T. equi and in vitro neutralization experiments suggest that the protein is involved in erythrocyte invasion. Proteomic analyses indicate that CLAMP interacts with the equine erythrocyte α-and ß- spectrin chains in the initial stages of T. equi invasion and maintains these interactions while also associating with the anion-exchange protein, tropomyosin 3, band 4.1 and cytoplasmic actin 1 after invasion. Additionally, serological analyses show that T. equi-infected horses mount robust antibody responses against CLAMP indicating that the protein is immunogenic and therefore represents a potential vaccine candidate.


Subject(s)
Erythrocyte Membrane/metabolism , Horse Diseases/parasitology , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Theileria/pathogenicity , Theileriasis/parasitology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Blood Proteins/metabolism , Claudins , Epitopes, B-Lymphocyte/immunology , Erythrocytes/parasitology , Horse Diseases/immunology , Horses/blood , Horses/parasitology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Merozoites/genetics , Merozoites/metabolism , Neutralization Tests , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Theileria/growth & development , Theileria/immunology , Theileria/metabolism , Theileriasis/immunology
3.
Parasit Vectors ; 13(1): 606, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33272316

ABSTRACT

BACKGROUND: The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. METHODS: The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. RESULTS: We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. CONCLUSIONS: The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia/drug effects , Babesiosis/parasitology , Horse Diseases/parasitology , Quinolones/pharmacology , Theileria/drug effects , Theileriasis/parasitology , Animals , Babesia/growth & development , Babesia/physiology , Babesiosis/drug therapy , Erythrocytes/parasitology , Horse Diseases/drug therapy , Horses , Leukocytes, Mononuclear/parasitology , Theileria/growth & development , Theileria/physiology , Theileriasis/drug therapy
4.
Int J Parasitol ; 49(2): 183-197, 2019 02.
Article in English | MEDLINE | ID: mdl-30690089

ABSTRACT

The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.


Subject(s)
Babesia/growth & development , Babesiosis/pathology , Babesiosis/physiopathology , Cattle Diseases/pathology , Cattle Diseases/physiopathology , Host-Pathogen Interactions , Ticks/parasitology , Animals , Babesia/immunology , Babesia/pathogenicity , Babesiosis/immunology , Blood Cells/parasitology , Cattle
5.
Vet Anim Sci ; 7: 100056, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32734077

ABSTRACT

Tissue inhibitor of metalloproteinase-1 (TIMP-1) and interleukin-10 (IL-10) were identified as potential biomarkers for ovine scrapie in a mouse model. The development of novel diagnostic methods to identify pre-clinical scrapie-infected animals is needed. In this study, ELISA was used to assess TIMP-1 and IL-10 levels in 158 serum samples from naïve and preclinical scrapie-infected sheep. Young (≤ 18 months) naïve sheep had significantly lower TIMP-1 levels compared with old (≥ 20 months) naïve and old infected sheep (P<0.04). Young naïve sheep had lower IL-10 than old naïve sheep (P<0.001). Both cytokines tended to have lower levels in young naïve sheep compared to infected sheep but this did not reach significance. A larger sample size will be helpful in determining the potential of these cytokines as a diagnostic tool.

6.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30455197

ABSTRACT

Anaplasma marginale is a prototypical highly antigenically variant bacterial pathogen dependent on the sequential generation of major surface protein 2 (Msp2) outer membrane variants to establish persistent infection. Msp2 is encoded by a single expression site, and diversity is achieved by gene conversion of chromosomally encoded msp2 pseudogenes. Analysis of the full complement of msp2 pseudogenes in the St. Maries strain revealed identical sequences in different loci. The Florida strain shared the same locus structure, but in the loci where the St. Maries strain had two identical pseudogenes, the Florida strain had one whose sequence was identical to the St. Maries sequences, while the sequence of the second pseudogene differed. Consequently, we hypothesized that the msp2 pseudogene repertoire arose via gene duplication, allowing structural variation to occur in one copy but the utility of the other to be retained. Using comparative genomics, we first established that duplication of msp2 pseudogenes is common among A. marginale strains: all seven examined strains had at least one duplicate pair in which either the genes in the pair were maintained as identical copies or the genes contained segmental changes. We then demonstrated that a minimal segmental change in a duplicated pseudogene locus is sufficient for immune escape from the broad antibody response generated in a natural host, as is a completely divergent pseudogene sequence in an otherwise conserved locus. The results support a model in which a locus first duplicates, resulting in a second identical copy, and then progressively incorporates changes to generate an msp2 repertoire capable of generating sufficient antigenic variants to escape immunity and establish persistent infection.


Subject(s)
Anaplasma marginale , Antigenic Variation/genetics , Bacterial Outer Membrane Proteins/genetics , Pseudogenes/genetics , Anaplasma marginale/genetics , Anaplasma marginale/pathogenicity , Anaplasmosis/immunology , Anaplasmosis/microbiology , Antigens, Bacterial/genetics
7.
Sci Rep ; 8(1): 6096, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666434

ABSTRACT

Babesia bigemina and Babesia bovis, are the two major causes of bovine babesiosis, a global neglected disease in need of improved methods of control. Here, we describe a shared method for the stable transfection of these two parasites using electroporation and blasticidin/blasticidin deaminase as a selectable marker. Stably transfected B. bigemina and B. bovis were obtained using a common transfection plasmid targeting the enhanced green fluorescent protein-BSD (egfp-bsd) fusion gene into the elongation factor-1α (ef-1α) locus of B. bigemina and B. bovis under the control of the B. bigemina ef-1α promoter. Sequencing, Southern blotting, immunoblotting and immunofluorescence analysis of parasite-infected red blood cells, demonstrated that the egfp-bsd gene was expressed and stably integrated solely into the ef-1α locus of both, B. bigemina and B. bovis. Interestingly, heterologous B. bigemina ef-1α sequences were able to drive integration into the B. bovis genome by homologous recombination, and the stably integrated B. bigemina ef-1α-A promoter is fully functional in B. bovis. Collectively, the data provides a new tool for genetic analysis of these parasites, and suggests that the development of vaccine platform delivery systems based on transfected B. bovis and B. bigemina parasites using homologous and heterologous promoters is feasible.


Subject(s)
Babesia bovis/genetics , Babesia/genetics , Babesiosis/parasitology , Cattle Diseases/parasitology , Transfection/methods , Animals , Cattle/parasitology , Electroporation/methods , Green Fluorescent Proteins/genetics , Homologous Recombination , Peptide Elongation Factor 1/genetics , Plasmids/genetics , Promoter Regions, Genetic , Protozoan Proteins/genetics , Recombinant Fusion Proteins/genetics , Transformation, Genetic
8.
Int J Parasitol Drugs Drug Resist ; 8(2): 265-270, 2018 08.
Article in English | MEDLINE | ID: mdl-29689532

ABSTRACT

Babesia bovis, Babesia bigemina and Theileria equi are worldwide tick-borne hemoprotozoan that cause diseases characterized by fever, anemia, weight loss and abortion. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the host for life, and becoming a reservoir for tick transmission. The live-attenuated vaccines for B. bovis and B. bigemina are not available for worldwide use due to legal restrictions and other concerns such as potential erythrocyte antigen and pathogen contamination, and a vaccine for T. equi is not available. The use of chemotherapeutics is essential to treat and control these diseases, but several studies have shown the development of drug-resistance by these parasites, and safe and effective alternative drugs are needed. Tulathromycin, a macrolide antibiotic, has proven to be effective against a vast range of bacteria and Plasmodium yoelli, a Babesia and Theileria related intra-erythrocytic apicomplexan. Draxxin® (tulathromycin) is currently licensed to treat infections that cause respiratory diseases in cattle in several countries. In this study, the activity of Draxxin® was tested in vitro on cultured B. bovis, B. bigemina and T. equi. Addition of the drug to in vitro cultures resulted in cessation of parasite replication of the three species tested, B. bovis, B. bigemina and T. equi, with estimated IC50 of 16.7 ±â€¯0.6 nM; 6.2 ±â€¯0.2 nM and 2.4 ±â€¯0.1 nM, respectively, at 72 h. Furthermore, neither parasites nor parasite DNA were detectable in cultures treated with IC100, suggesting Draxxin® is a highly effective anti-Babesia/Theileria drug. Importantly, the IC50 calculated for Draxxin® for the Babesia/Theileria parasites tested is lower that the IC50 calculated for some drugs currently in use to control these parasites. Collectively, the data strongly support in vivo testing of Draxxin® for the treatment of bovine babesiosis and equine piroplasmosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Babesia bovis/drug effects , Babesia/drug effects , Disaccharides/pharmacology , Heterocyclic Compounds/pharmacology , Theileria/drug effects , Animals , Babesia/growth & development , Babesia bovis/growth & development , Babesiosis , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Erythrocytes/parasitology , Horse Diseases/drug therapy , Horse Diseases/parasitology , Horses , In Vitro Techniques , Inhibitory Concentration 50 , Phylogeny , Theileria/growth & development , Theileriasis
9.
Parasit Vectors ; 10(1): 214, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28464956

ABSTRACT

BACKGROUND: Babesia bovis is an intra-erythrocytic tick-transmitted apicomplexan protozoan parasite. It has a complex lifestyle including asexual replication in the mammalian host and sexual replication occurring in the midgut of host tick vector, typically, Rhipicephalus microplus. Previous evidence showed that certain B. bovis genes, including members of 6-Cys gene family, are differentially expressed during tick and mammalian stages of the parasite's life cycle. Moreover, the 6-Cys E gene is differentially expressed in the T3Bo strain of B. bovis tick stages, and anti 6-Cys E antibodies were shown to be able to inhibit in vitro growth of the phenotypically distinct B. bovis Mo7clonal line. METHODS: In this study, the 6-Cys E gene of B. bovis T3Bo strain was disrupted by transfection using a plasmid containing 6-Cys gene E 5' and 3' regions to guide homologous recombination, and the egfp-bsd fusion gene under control of a ef-1α promoter, yielding a B. bovis clonal line designated 6-Cys EKO-cln. Full genome sequencing of 6-Cys EKO-cln parasites was performed and in vitro inhibition assays using anti 6-Cys E antibodies. RESULTS: Full genome sequencing of 6-Cys EKO-cln B. bovis demonstrated single insertion of egfp-bsd gene that disrupts the integrity of 6-Cys gene E. Undistinguishable growth rate of 6-Cys EKO-cln line compared to wild-type 6-Cys E intact T3Bo B. bovis strain in in vitro cultures indicates that expression of gene 6-Cys E is not essential for blood stage replication in this strain. In vitro inhibition assays confirmed the ability of anti-6 Cys E antibodies to inhibit the growth of the wild-type Mo7 and T3Bo B. bovis parasites, but no significant inhibition was found for 6-Cys EKO-cln line parasites. CONCLUSIONS: Overall, the data suggest that the anti-6 Cys E antibody neutralising effect on the wild type strains is likely due to mechanical hindrance, or cross-reactivity, rather than due to functional requirements of 6-Cys gene E product for survival and development of the erythrocyte stages. Further investigation is underway to determine if the 6-Cys E protein is required for replication and sexual stage development of B. bovis during tick stages.


Subject(s)
Babesia bovis/genetics , Genes, Protozoan , Transfection , Animals , Babesia bovis/drug effects , Babesia bovis/growth & development , Babesiosis/parasitology , Cattle , Cattle Diseases/parasitology , Gene Knockout Techniques , Genotype , Homologous Recombination , Life Cycle Stages , Phenotype , Promoter Regions, Genetic
10.
Parasit Vectors ; 9(1): 576, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27835993

ABSTRACT

BACKGROUND: Tick-borne Babesia bigemina is responsible for acute and potentially lethal hemolytic disease in cattle. The development of genetic manipulation tools necessary to the better understanding of parasite biology is currently limited by the lack of a complete parasite genome and experimental tools such as transfection. Effective promoters, required to regulate expression of transgenes, such as the elongation factor-1 alpha (ef-1α), have been identified in other apicomplexans such as Babesia bovis and Plasmodium falciparum. METHODS: The B. bigemina ef-1a locus was defined by searching a partial genome library of B. bigemina (Sanger Institute). Presence of an intron in the 5' untranslated region was determined by 5' Rapid Amplification of cDNA Ends (RACE) analysis. Promoter activity was determined by measurement of luciferase expression at several time points after electroporation, efficiency of transfections and normalization of data was determined by quantitative PCR and by the percentage of parasitized erythrocytes. RESULTS: The ef-1α locus contains two identical head to head ef-1α genes separated by a 1.425 kb intergenic (IG) region. Significant sequence divergence in the regions upstream of the inverted repeats on each side of the B. bigemina IG region suggest independent regulation mechanisms for controlling expression of each of the two ef-1α genes. Plasmid constructs containing the 5' and 3' halves of the IG regions controlling the expression of the luciferase gene containing a 3' region of a B. bigemina rap-1a gene, were generated for the testing of luciferase activity in transiently transfected parasites. Both halves of the ef-1α IG region tested showed the ability to promote high level production of luciferase. Moreover, both B. bigemina ef-1α promoters are also active in transiently transfected B. bovis and conversely, a B. bovis ef-1α promoter is active in transiently transfected B. bigemina. CONCLUSIONS: Collectively these data demonstrate the existence of two distinct promoters with homologous and heterologous promoter function in B. bigemina and B. bovis which is described for the first time in Babesia species. This study is of significance for development of interspecies stable transfection systems for B. bigemina and for B. bovis.


Subject(s)
Babesia/genetics , Peptide Elongation Factor 1/biosynthesis , Peptide Elongation Factor 1/genetics , Promoter Regions, Genetic , Artificial Gene Fusion , Gene Expression Profiling , Genes, Reporter , Luciferases/analysis , Luciferases/genetics , Real-Time Polymerase Chain Reaction , Transfection
11.
Infect Immun ; 84(10): 2740-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27400719

ABSTRACT

Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain the core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of the native Msp2 protein structure and function, we demonstrate that structured elements, most notably, ß-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast, the HVR is overwhelmingly a random coil, with the structured α-helices and ß-sheets being confined to the genomically defined structural tethers that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion-type porin function in native Msp2. Importantly, the predominance of the random coil provides plasticity for the formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire.


Subject(s)
Anaplasma marginale/immunology , Anaplasmosis/immunology , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antigenic Variation , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Immune Evasion/physiology , Amino Acid Sequence , Anaplasma marginale/genetics , Anaplasma marginale/pathogenicity , Anaplasmosis/microbiology , Antibodies, Bacterial/genetics , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Gene Conversion , Humans , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Parasit Vectors ; 9: 260, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27146413

ABSTRACT

BACKGROUND: Equine piroplasmosis (EP) caused by Theileria equi, Babesia caballi, or both, contributes to significant economic loss in the equine industry and remains uncontrolled in Egypt. This study focuses on surveying T. equi and B. caballi infections and hematological disorders in equine populations in Egypt. METHODS: Theileria equi and B. caballi infections were assessed in blood from 88 horses and 51 donkeys in Egypt using light microscopy, indirect immunofluorescent antibody test (IFAT), nested PCR (nPCR), and competitive-ELISA (cELISA) assays. PCR products were examined for specificity by DNA sequencing. Hematological alterations were evaluated using a standard cell counter. RESULTS: Microscopic analysis revealed EP infection in 11.4% and 17.8% of horses and donkeys respectively. IFAT detected 23.9% and 17.0% infection of T. equi and B. caballi, respectively, in horses, and 31.4% of T. equi and B. caballi in donkeys. T. equi cELISA detected 14.8% and 23.5% positive horses and donkeys, respectively, but the B. caballi RAP-1-based cELISA failed to detect any positives, a result hypothesized to be caused by sequence polymorphism found in the rap-1 genes. Nested-PCR analysis identified 36.4% and 43.1% positive horses and donkeys, respectively for T. equi and it also identified 19.3% and 15.7% positive horses and donkeys, respectively for B. caballi. The overall EP incidence found in the population under study was relatively high and comparable regardless of the diagnostic method used (56.8% using nPCR and 48.9% using IFAT). Hematologic analysis revealed macrocytic hypochromic anemia and thrombocytopenia in all piroplasma-infected horses. CONCLUSIONS: The data confirm relatively high levels of EP, likely causing hematological abnormalities in equines in Egypt, and also suggest the need for an improved serological test to diagnose B. caballi infection in this region.


Subject(s)
Babesia/genetics , Babesiosis/parasitology , Horse Diseases/parasitology , Theileria/genetics , Theileriasis/parasitology , Animals , Babesia/classification , Babesiosis/epidemiology , DNA/genetics , Egypt/epidemiology , Horse Diseases/epidemiology , Horses , Sensitivity and Specificity , Theileria/classification , Theileriasis/epidemiology
13.
Parasit Vectors ; 8: 319, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26062684

ABSTRACT

BACKGROUND: Babesiosis threatens the development of the cattle and buffaloes industries in Egypt and improved control is needed. The main objectives of this study are surveying the presence of bovine babesiosis in distinct selected bovine and buffalo populations in Egypt using novel molecular and previously validated serological methods, while also comparing the occurrence of hematological alterations among Babesia infected cattle and buffalos. METHODS: A total of 253 and 81 blood samples from apparently healthy cattle and buffaloes, respectively, were randomly collected from diverse locations in Egypt. All samples were tested for Babesia bovis and B. bigemina infection using blood film examination, competitive ELISA (cELISA) and PCR. Novel semi-nested and nested PCR assays for the detection of B. bovis and B. bigemina respectively, were developed and used to analyze DNA extracted from bovine and buffalo samples. Hematological profiles were studied using a hematological analyzer. RESULTS: Blood films examination revealed 13.8% and 7.4% Babesia infection rates in cattle and buffaloes, respectively. However, in cattle, the cELISA detected 32.8%, 21.3% and 10.7% infection rates with B. bigemina, B. bovis and mixed infection, respectively. In addition, cELISA identified 22.2%, 22.2% and 6.2% infection rates with B. bigemina, B. bovis and mixed infection, respectively in buffaloes. The semi-nested PCR assay showed that 15% of the tested samples were positive for B. bovis in cattle, but just 3% in buffaloes. Infections with B. bigemina were also found in cattle (32.4%), but not in buffaloes upon nested PCR analysis. Sequencing analysis confirmed the identity of the PCR amplicons and showed that Egyptian genotypes of B. bigemina and B. bovis highly resemble sequences previously deposited in GenBank. Hemograms performed on the sampled animals revealed macrocytic hypochromic anemia associated with reduced platelet counts in infected cattle with babesiosis. In addition, marked increases in total leukocyte and granulocytic counts and decreases in lymphocytic counts were found in infected cattle. In contrast, no such hematological anomalies were found in presumably Babesia-infected buffaloes. CONCLUSIONS: Frequent occurrence of babesiosis among apparently healthy bovines in Egypt, suggests the need for appropriately designed prevalence studies in this country. Infected bovine, but not buffalo, populations often present hematological disorders compatible with intravascular hemolysis and thrombocytopenia.


Subject(s)
Babesia/isolation & purification , Babesiosis/diagnosis , Babesiosis/epidemiology , Blood/parasitology , Buffaloes/parasitology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Animals , Babesia/classification , Babesia/genetics , Babesia/immunology , Babesiosis/blood , Babesiosis/parasitology , Cattle , Cattle Diseases/blood , Cattle Diseases/parasitology , Egypt/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Polymerase Chain Reaction , Protozoan Proteins/genetics , Protozoan Proteins/immunology
14.
Mol Biochem Parasitol ; 188(2): 109-15, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23541863

ABSTRACT

Theileriosis in horses and cattle is caused by tick-borne Apicomplexa parasites and results in death or life-long infection in their respective hosts. Transmission risk associated with persistent infection severely limits movement of horses and cattle resulting in economic losses. The recent reemergence of Theileria equi infection in U.S. horses demonstrates the continual threat Apicomplexa parasites represent to global animal health. A paucity of data concerning equine immune responses to T. equi, including antigens recognized by antibodies in clinically asymptomatic, persistently infected horses, precludes vaccine development. Therefore, this investigation was initiated to characterize antigens recognized by the equine antibody response to T. equi. This goal was accomplished by defining T. equi merozoite antigens that are recognized by antibodies in horses infected with distinct T. equi isolates. Previously it was shown that equine post-infection serum consistently recognized at least five T. equi merozoite antigens, but their precise identity remained unknown. To determine specificity of antibody target identification, T. equi merozoite antigens were first isolated using equine post-infection serum in affinity chromatography. Proteins recognized by the equine antibodies were then isolated from two-dimensional electrophoresis gels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using the recently available T. equi genome database. Five T. equi antigens were identified and include Equi Merozoite Antigen-2 (EMA-2), EMA-3 and EMA-6, a previously uncharacterized protein annotated as "signal peptide containing protein", and 40S ribosomal protein S12.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Immunodominant Epitopes/immunology , Theileria/immunology , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/isolation & purification , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Horse Diseases/immunology , Horses , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/isolation & purification , Merozoites/immunology , Tandem Mass Spectrometry , Theileriasis/immunology
15.
Article in English | MEDLINE | ID: mdl-24533294

ABSTRACT

Bovine babesiosis, caused by Babesia bovis, is a global tick borne hemoprotozoan parasite disease characterized by fever, anemia, weight losses and ultimately death. Several babesicidal drugs that have been in use in cattle for years have proven to be only partially effective and the development of alternative chemotherapeutics that are highly specific and have low toxicity against babesiosis is needed. Trifluralin derivatives specifically bind alpha-tubulin in plants and protozoa parasites causing growth inhibition. A set of 12 trifluralin analogues (TFLA) has previously been shown to be inhibitory for the growth of Leishmania species. The conservation of several key amino acids involved in the trifluralin binding site of alpha-tubulin among Leishmania sp. and B. bovis provides rationale for testing these compounds also as babesiacides. The previously tested Leishmania inhibitory, TFLA 1-12 minus TFLA 5, in addition to three novel TFLA (termed TFLA 13-15), were tested against in vitro cultured B. bovis parasites. While all of the TFLA tested in the study showed inhibition of B. bovis growth in vitro TFLA 7, TFLA 10 and TFLA 13, were the most effective inhibitors with estimated IC50 (µM) at 72 h of 8.5 ± 0.3; 9.2 ± 0.2; 8.9 ± 0.7, respectively for the biologically attenuated cloned B. bovis Mo7 strain, and 13.6 ± 1.5; 18.7 ± 1.6; 10.6 ± 1.9, respectively for the virulent B. bovis T3Bo strain. The differences found between the two strains were not statistically significant. Importantly, these drugs displayed low levels of toxicity for the host erythrocytes and bovine renal arterial endothelial cells at the doses tested. The demonstrated ability of trifluralin analogues to inhibit in vitro growth of B. bovis parasites combined with their low toxicity for host cells suggests that these compounds may be further developed as novel alternatives for the treatment of bovine babesiosis.

16.
BMC Genomics ; 13: 603, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23137308

ABSTRACT

BACKGROUND: Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. RESULTS: The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. CONCLUSIONS: The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.


Subject(s)
Genome, Protozoan , Theileria/genetics , Animals , Cattle , Chromosome Mapping , Chromosomes/genetics , Chromosomes/metabolism , Comparative Genomic Hybridization , Energy Metabolism/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Phospholipids/metabolism , Phylogeny , Protozoan Proteins/genetics , Theileria/classification , Theileriasis/genetics , Theileriasis/metabolism , Theileriasis/parasitology
17.
Parasitol Int ; 60(1): 13-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20884375

ABSTRACT

A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the B. bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family contains six genes termed Bbo-6cys-A, B, C, D, E and F encoding for proteins containing an arrangement of 6 cysteine residues. The Bbo-6cys genes A, B, C, D, and E are tandemly arranged as a cluster of Chromosome 2 in the B. bovis genome, whereas gene F is located in a distal region in the same chromosome. The Bbo-6cys-E gene, with higher homology to PFS230, was selected for further examination. Immunoblot analysis using recombinant Bbo-6cys-E protein and B. bovis-positive bovine serum demonstrated expression by the parasite and immunogenicity during B. bovis infection. Immunofluorescence analysis using anti-Bbo-6cys-E antibodies confirmed expression of Bbo-6cys-E in in vitro blood stages of B. bovis. In addition, polyclonal antisera against both recombinant Bbo-6cys-E and specific synthetic peptides containing predicted B-cell epitopes of Bbo-6cys-E, significantly inhibited erythrocyte invasion by B. bovis in in vitro neutralization assays, suggesting an important functional role for this protein. Identification of this new gene family in B. bovis and further investigation on its biological significance may aid our understanding of the bovine, tick and parasite relationships and the development of improved control methods against B. bovis infection in cattle.


Subject(s)
Babesia bovis/genetics , Cattle/parasitology , Genes, Protozoan , Multigene Family , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Babesia bovis/immunology , Babesia bovis/metabolism , Cloning, Molecular , DNA, Protozoan/genetics , Epitopes, B-Lymphocyte/immunology , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Gene Expression , Immunoblotting , Mice , Mice, Inbred BALB C , Neutralization Tests , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Recombinant Proteins/genetics
18.
Parasitol Int ; 59(2): 294-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20304092

ABSTRACT

A gene coding for a protein with sequence similarity to the Toxoplasma gondii micronemal 1 (MIC1) protein that contains a copy of a domain described as a sialic acid-binding micronemal adhesive repeat (MAR) was identified in the Babesia bovis genome. The single copy gene, located in chromosome 3, contains an open reading frame encoding a putative 181 amino acid protein, which is highly conserved among distinct B. bovis strains. Antibodies against both recombinant protein and synthetic peptides mimicking putative antigenic regions in the B. bovis-MIC1 (Bbo-MIC1) protein bind to the parasite in immunofluorescence assays and significantly inhibit erythrocyte invasion in in vitro B. bovis cultures. Bbo-MIC1 is recognized by antibodies in serum from B. bovis infected cattle, demonstrating expression and immunogenicity during infection. Overall, the results suggest that Bbo-MIC1 protein is a viable candidate for development of subunit vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan , Babesia bovis/metabolism , Organelles/metabolism , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Babesia bovis/immunology , Babesia bovis/pathogenicity , Babesiosis/parasitology , Babesiosis/veterinary , Cattle , Cattle Diseases/parasitology , Cell Adhesion Molecules , Erythrocytes/metabolism , Erythrocytes/parasitology , Molecular Sequence Data , N-Acetylneuraminic Acid/metabolism , Neutralization Tests , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Alignment
19.
Vet Parasitol ; 166(1-2): 66-72, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19699587

ABSTRACT

Incidence of bovine babesiosis in Portugal is currently unknown. In this study, a first survey of Babesia bovis and Babesia bigemina infection in cattle was carried out using blood samples from 406 clinically healthy individuals from different districts from Central and Southern regions of Portugal and analyzed by indirect enzyme linked immunosorbent assay (iELISA) and nested polymerase chain reaction (nPCR). Overall, serological testing revealed that 79% and 52% of cattle were positive for B. bovis and B. bigemina antibodies, respectively, whereas nPCR testing detected 71% and 34% cattle infected with B. bovis and B. bigemina protozoan, respectively. This is the first report of the prevalence of B. bovis and B. bigemina in cattle obtained by serological and DNA analysis studies in Central and Southern regions of Portugal. These data suggests high incidence of Babesia sp. infection in Portugal and can be used for designing adequate control programs.


Subject(s)
Antibodies, Protozoan/blood , Babesiosis/veterinary , Cattle Diseases/epidemiology , DNA, Protozoan/blood , Animals , Babesia , Babesia bovis , Babesiosis/epidemiology , Cattle , Enzyme-Linked Immunosorbent Assay , Portugal/epidemiology , Prevalence , Protozoan Proteins/genetics , Reproducibility of Results , Seroepidemiologic Studies
20.
Prep Biochem Biotechnol ; 36(4): 333-53, 2006.
Article in English | MEDLINE | ID: mdl-16971304

ABSTRACT

A spherical porous glass support Trisoperl (TRISO) with four pore diameters (ø 47.8; 55.9; 102.6, and 108.8 nm) was characterized and selected for application in an optical flow cell immunosensor, in comparison with controlled pore glass (CPG). The TRISO support was functionalized with aldehyde and isothiocyanate (-NCS) groups to attach bovine serum albumin and alkaline phosphatase (AP). The TRISO isothiocyanate pore diameter 47.8 nm (TRISO(-NCS) 47.8 nm) showed the better potential to be used in the immunosensor. It immobilized more protein (19.3 mg AP per g support) while presenting an optical performance comparable to the CPG. CPG(-NCS) and TRISO(-NCS) 47.8 nm were tested in the immunosensor model where the saturation of the Goat IgG immobilized in the supports with Monoclonal Anti-Goat IgG conjugated with Cyanine-5 was reached, followed by regeneration with the elution buffer modified PBS pH 2.0. The TRISO(-NCS) 47.8 nm presented lower fluorescence intensity at saturation (around 39 AU) than CPG(-NCS) (150 to 104 AU), but revealed a major advantage related to the uniform arrangement of the spherical particles in the flow cell, generating no significant fluorescence differences between gravity and flow package.


Subject(s)
Alkaline Phosphatase/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Glass/chemistry , Aldehydes/chemistry , Animals , Antibodies, Monoclonal , Carbocyanines/analysis , Cattle , Fluorescent Dyes/analysis , Immunoglobulin G/chemistry , Isothiocyanates/chemistry , Optics and Photonics , Serum Albumin, Bovine/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...