Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Metabolism ; : 155976, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019342

ABSTRACT

BACKGROUND: Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS: Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with virogenic, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS: In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS: Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT: Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.

2.
EBioMedicine ; 97: 104850, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898094

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder leading to anovulatory infertility. Abnormalities in the central neuroendocrine system governed by gonadotropin-releasing hormone (GnRH) neurons might be related to ovarian dysfunction in PCOS, although the link in this disordered brain-to-ovary communication remains unclear. Here, we manipulated GnRH neurons using chemogenetics in adult female mice to unveil whether chronic overaction of these neurons would trigger PCOS-like hormonal and reproductive impairments. METHODS: We used adult Gnrh1cre female mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in hypophysiotropic GnRH neurons. Chronic chemogenetic activation protocol was carried out with clozapine N-oxide (CNO) i.p. injections every 48 h over a month. We evaluated the reproductive and hormonal profile before, during, and two months after chemogenetic manipulations. FINDINGS: We discovered that the overactivation of GnRH neurons was sufficient to disrupt reproductive cycles, promote hyperandrogenism, and induce ovarian dysfunction. These PCOS features were detected with a long-lasting neuroendocrine dysfunction through abnormally high luteinizing hormone (LH) pulse secretion. Additionally, the GnRH-R blockade prevented the establishment of long-term neuroendocrine dysfunction and androgen excess in these animals. INTERPRETATION: Taken together, our results show that hyperactivity of hypothalamic GnRH neurons is a major driver of reproductive and hormonal impairments in PCOS and suggest that antagonizing the aberrant GnRH signaling could be an efficient therapeutic venue for the treatment of PCOS. FUNDING: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n◦ 725149).


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Mice , Animals , Luteinizing Hormone , Gonadotropin-Releasing Hormone , Neurons
4.
EBioMedicine ; 90: 104535, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37001236

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS: We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS: Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION: We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING: INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).


Subject(s)
Polycystic Ovary Syndrome , Humans , Animals , Mice , Female , Luteinizing Hormone , Anti-Mullerian Hormone , Diffusion Tensor Imaging , Gonadotropin-Releasing Hormone , Neuroglia/pathology
5.
Science ; 377(6610): eabq4515, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048943

ABSTRACT

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Subject(s)
Cognition , Cognitive Dysfunction , Down Syndrome , Gonadotropin-Releasing Hormone , Olfaction Disorders , Adult , Animals , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/drug therapy , Down Syndrome/psychology , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/physiology , Gonadotropin-Releasing Hormone/therapeutic use , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Middle Aged , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Synaptic Transmission/drug effects , Young Adult
6.
Proc Natl Acad Sci U S A ; 119(30): e2203503119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867816

ABSTRACT

Women with polycystic ovary syndrome (PCOS) frequently experience decreased sexual arousal, desire, and sexual satisfaction. While the hypothalamus is known to regulate sexual behavior, the specific neuronal pathways affected in patients with PCOS are not known. To dissect the underlying neural circuitry, we capitalized on a robust preclinical animal model that reliably recapitulates all cardinal PCOS features. We discovered that female mice prenatally treated with anti-Müllerian hormone (PAMH) display impaired sexual behavior and sexual partner preference over the reproductive age. Blunted female sexual behavior was associated with increased sexual rejection and independent of sex steroid hormone status. Structurally, sexual dysfunction was associated with a substantial loss of neuronal nitric oxide synthase (nNOS)-expressing neurons in the ventromedial nucleus of the hypothalamus (VMH) and other areas of hypothalamic nuclei involved in social behaviors. Using in vivo chemogenetic manipulation, we show that nNOSVMH neurons are required for the display of normal sexual behavior in female mice and that pharmacological replenishment of nitric oxide restores normal sexual performance in PAMH mice. Our data provide a framework to investigate facets of hypothalamic nNOS neuron biology with implications for sexual disturbances in PCOS.


Subject(s)
Nitric Oxide Synthase Type I , Nitric Oxide , Polycystic Ovary Syndrome , Sexual Behavior , Ventromedial Hypothalamic Nucleus , Animals , Anti-Mullerian Hormone/pharmacology , Disease Models, Animal , Female , Mating Preference, Animal , Mice , Neurons/drug effects , Neurons/enzymology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Polycystic Ovary Syndrome/enzymology , Polycystic Ovary Syndrome/physiopathology , Ventromedial Hypothalamic Nucleus/drug effects , Ventromedial Hypothalamic Nucleus/metabolism
7.
Compr Physiol ; 12(2): 3347-3369, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35578968

ABSTRACT

Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin-releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma-aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347-3369, 2022.


Subject(s)
Polycystic Ovary Syndrome , Adult , Androgens , Animals , Female , Gonadotropin-Releasing Hormone , Humans , Neurosecretory Systems , Polycystic Ovary Syndrome/etiology , Polycystic Ovary Syndrome/pathology , Pregnancy , gamma-Aminobutyric Acid
8.
Mol Cell Endocrinol ; 532: 111302, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33964320

ABSTRACT

Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Animals , Humans
9.
J Neuroendocrinol ; 33(5): e12972, 2021 05.
Article in English | MEDLINE | ID: mdl-33896057

ABSTRACT

Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.


Subject(s)
Hypothalamus/metabolism , Ovarian Follicle/metabolism , Pituitary Gland/metabolism , Pro-Opiomelanocortin/metabolism , Stress, Psychological/metabolism , Animals , Corpus Luteum/metabolism , Corticosterone/metabolism , Female , Growth Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Luteinizing Hormone/metabolism , Male , Mice , Neurons/metabolism , Pituitary-Adrenal System/metabolism , Prolactin/metabolism , Thyrotropin/metabolism
10.
Cell Mol Life Sci ; 78(1): 1-16, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32564094

ABSTRACT

Research into the physiological actions of anti-Müllerian hormone (AMH) has rapidly expanded from its classical role in male sexual differentiation to the regulation of ovarian function, routine clinical use in reproductive health and potential use as a biomarker in the diagnosis of polycystic ovary syndrome (PCOS). During the past 10 years, the notion that AMH could act exclusively at gonadal levels has undergone another paradigm shift as several exciting studies reported unforeseen AMH actions throughout the Hypothalamic-Pituitary-Gonadal (HPG) axis. In this review, we will focus on these findings reporting novel AMH actions across the HPG axis and we will discuss their potential impact and significance to better understand human reproductive disorders characterized by either developmental alterations of neuroendocrine circuits regulating fertility and/or alterations of their function in adult life. Finally, we will summarize recent preclinical studies suggesting that elevated levels of AMH may potentially be a contributing factor to the central pathophysiology of PCOS and other reproductive diseases.


Subject(s)
Anti-Mullerian Hormone/metabolism , Gonads/metabolism , Hypothalamus/metabolism , Pituitary Gland/metabolism , Female , Humans , Neurosecretory Systems/growth & development , Neurosecretory Systems/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Reproduction , Signal Transduction
11.
Cell Metab ; 30(4): 616-618, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31577927

ABSTRACT

Emerging evidence indicates that the composition of the gut microbiome might affect metabolic homeostasis as well as reproductive fitness in women. In Nature Medicine, a new study by Qi et al. (2019), provides exciting insights into how gut microbiota dysbiosis may drive development of polycystic ovary syndrome (PCOS) and insulin resistance.


Subject(s)
Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Bile , Female , Fertility , Humans , Interleukins , Interleukin-22
12.
EBioMedicine ; 44: 582-596, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31178425

ABSTRACT

BACKGROUND: Enhanced GABA activity in the brain and a hyperactive hypothalamic-pituitary-gonadal axis are associated with polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Women with PCOS exhibit elevated cerebrospinal fluid GABA levels and preclinical models of PCOS exhibit increased GABAergic input to GnRH neurons, the central regulators of reproduction. The arcuate nucleus (ARN) is postulated as the anatomical origin of elevated GABAergic innervation; however, the functional role of this circuit is undefined. METHODS: We employed a combination of targeted optogenetic and chemogenetic approaches to assess the impact of acute and chronic ARN GABA neuron activation. Selective acute activation of ARN GABA neurons and their fiber projections was coupled with serial blood sampling for luteinizing hormone secretion in anesthetized male, female and prenatally androgenised (PNA) mice modelling PCOS. In addition, GnRH neuron responses to ARN GABA fiber stimulation were recorded in ex vivo brain slices. Chronic activation of ARN GABA neurons in healthy female mice was coupled with reproductive phenotyping for PCOS-like features. FINDINGS: Acute stimulation of ARN GABA fibers adjacent to GnRH neurons resulted in a significant and long-lasting increase in LH secretion in male and female mice. The amplitude of this response was blunted in PNA mice, which also exhibited a blunted LH response to GnRH administration. Infrequent and variable GABAA-dependent changes in GnRH neuron firing were observed in brain slices. Chronic activation of ARN GABA neurons in healthy females impaired estrous cyclicity, decreased corpora lutea number and increased circulating testosterone levels. INTERPRETATION: ARN GABA neurons can stimulate the hypothalamic-pituitary axis and chronic activation of ARN GABA neurons can mimic the reproductive deficits of PCOS in healthy females. Unexpectedly blunted HPG axis responses in PNA mice may reflect a history of high frequency GnRH/LH secretion and reduced LH stores, but also raise questions about impaired function within the ARN GABA population and the involvement of other circuits.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , GABAergic Neurons/metabolism , Luteinizing Hormone/biosynthesis , Ovary/metabolism , Polycystic Ovary Syndrome/etiology , Polycystic Ovary Syndrome/metabolism , Androgens/metabolism , Animals , Arcuate Nucleus of Hypothalamus/physiopathology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Gonadotropin-Releasing Hormone/metabolism , Immunohistochemistry , Mice , Mice, Transgenic , Ovary/pathology , Ovary/physiopathology , Polycystic Ovary Syndrome/physiopathology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...