Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 176: 109907, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34425352

ABSTRACT

In this study an improvised nuclear device (IND) is simulated using a software called HotSpot. The explosion took place in a theoretical central business district (CBD), for the major issue addressed in this paper is the comparison of two methods used for estimating the size of the potentially affected population. The first method estimates the size by multiplying the local average demographic density by the area of the zone of interest. The second method uses the population density gradient model developed by Colin Clark in 1951. The comparison of the two methods enables authorities to better estimate the allocation of resources. The conservative approach allocates the maximum resources possible. However, the Clark model enables a more realistic approach which allocates minimum resources to the emergency response. This study shows how accurate information can be quintessential for authorities to maximize the efficiency of their decisions.

2.
Appl Radiat Isot ; 176: 109905, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418730

ABSTRACT

An accident involving both fire and radioactive material might eventually deteriorate into a dual-threat situation. Such scenario connects two important consequences: (a) fire damage and (b) radiation health threat. Computational simulations considering hypothetic fire scenarios in hospitals using radioactive material can provide valuable information about such an event. The initial decision in regards to an emergency response should consider the fire consequences and radiation doses distribution in the environment with consequences appearing at different times. While the fire presents an immediate threat, radiation exposure also creates immediate and future concerns. The purpose of this study is to evaluate leukemia risk from a hypothetical radiological fire event in a hospital operating Cs-137 gamma blood irradiator. The simulation in this study used the Hotspot Health Physics software to generate output data such as total effective dose (TED). The data from HotSpot was then used as an input to the leukemia risk equations from Biological Effects of Ionizing Radiation Committee V and VII (BEIR V and VII) models accordingly. Results suggest that the risks are dependent of wind speed and height of release; however, when age and sex are taken into account different outputs are shown. Also, the risk model can be changed from BEIR VII (low doses) to BEIR V (high doses) as radiation doses rise due to its time-dependent behavior. Such change would bring potential impacts on logistics and risk communication.


Subject(s)
Fires , Urban Population , Humans , Radiation Exposure , Radiation Monitoring/methods , Resource Allocation , Risk Assessment/methods
3.
J Environ Radioact ; 208-209: 106034, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31454588

ABSTRACT

A radiological dispersal device (RDD) is built using an explosive device laced with radioactive materials. The RDD appears as a speculative radiological weapon with the aim of spreading radioactive material across an inhabited area. This study seeks to evaluate how the official decision-making process is influenced by the radiation vertical profile dose, using the hypothetical scenario of a simulated RDD detonation in a densely populated urban area. A simulated plume of strong radiation was generated from the explosion site, contaminating the surrounding area. Several atmospheric conditions impact on the contamination. However, this study focusses on the following main variables considered by HotSpot for a conservative simulation: (a) the atmospheric stability conditions (Pasquill-Gifford - PG classes); (b) the explosive power, and (c) the source-term. Gaussian modeling was used for its speed, and for its capacity to estimate the time-integrated atmospheric concentration of an aerosol at any point in 3D space. The simulation provided information about four main outcomes: (a) contamination plume area; (b) radiological risk dependency on PG classes; (c) total effective dose equivalent (TEDE) with a possible dependence on receptor height; and (d) potentially affected population's size. The findings suggest that a protocolled response from authorities should be implemented in order to effectively follow possible changes in the PG class. Which, in turn, may negatively impact the decision-making process.


Subject(s)
Radiation Dosage , Radioactive Hazard Release , Aerosols , Decision Making , Explosions , Nuclear Weapons , Radiation Monitoring , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...