Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36236402

ABSTRACT

Since the beginning of the COVID-19 pandemic, many works have been published proposing solutions to the problems that arose in this scenario. In this vein, one of the topics that attracted the most attention is the development of computer-based strategies to detect COVID-19 from thoracic medical imaging, such as chest X-ray (CXR) and computerized tomography scan (CT scan). By searching for works already published on this theme, we can easily find thousands of them. This is partly explained by the fact that the most severe worldwide pandemic emerged amid the technological advances recently achieved, and also considering the technical facilities to deal with the large amount of data produced in this context. Even though several of these works describe important advances, we cannot overlook the fact that others only use well-known methods and techniques without a more relevant and critical contribution. Hence, differentiating the works with the most relevant contributions is not a trivial task. The number of citations obtained by a paper is probably the most straightforward and intuitive way to verify its impact on the research community. Aiming to help researchers in this scenario, we present a review of the top-100 most cited papers in this field of investigation according to the Google Scholar search engine. We evaluate the distribution of the top-100 papers taking into account some important aspects, such as the type of medical imaging explored, learning settings, segmentation strategy, explainable artificial intelligence (XAI), and finally, the dataset and code availability.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed/methods , X-Rays
2.
Chemosphere ; 286(Pt 2): 131637, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34340113

ABSTRACT

Quantitative image analysis (QIA) was used for monitoring the morphology of activated sludge (AS) during a granulation process and, thus, to define and quantify, unequivocally, structural changes in microbial aggregates correlated with the sludge properties and granulation rates. Two sequencing batch reactors fed with acetate at organic loading rates of 1.1 ± 0.6 kgCOD m-3 d-1 (R1) and 2.0 ± 0.2 kgCOD m-3 d-1 (R2) and three minimal imposed sludge settling velocities (0.27 m h-1, 0.53 m h-1, and 5.3 m h-1) induced distinct granulation processes and rates. QIA results evidenced the turning point from flocculation to granulation processes by revealing the differences in the aggregates' stratification patterns and quantifying the morphology of aggregates with equivalent diameter (Deq) of 200 µm ≤ Deq ≤ 650 µm. Multivariate statistical analysis of the QIA data allowed to distinguish the granulation status in both systems, by clustering the observations according to the sludge aggregation and granules maturation status, and successfully predicting the sludge volume index measured at 5 min (SVI5) and 30 min (SVI30). These results evidence the possibility of defining unequivocally the granulation rate and anticipating the sludge settling properties at early stages of the process using QIA data. Hence, QIA could be used to predict episodes of granules disruption and hindered settling ability in aerobic granulation sludge processes.


Subject(s)
Bioreactors , Sewage , Aerobiosis , Flocculation , Waste Disposal, Fluid
4.
Curr Microbiol ; 78(1): 67-77, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159562

ABSTRACT

Mycoplasma is the smallest self-replicating bacteria, figuring as common contaminant of eukaryotic cell cultures. Production inputs and operator's manipulation seem to be the main sources of such contamination. Many analytical approaches have been applied for mycoplasma detection in cell cultures and also in biological products. However, unless they were validated, only indicator cell culture and bacteriological culture are considered as compendial methods for quality control of biological products. Nano-flow cytometry has been pointed out as an alternative technique for addressing prokaryotic and eukaryotic cell viability being a substantial tool for reference material production. In this study, a viability-flow-cytometry assay was standardized for M. gallisepticum and then applied to other cell-culture-contaminant mycoplasmas. For this, M. galliseticum's growth rate was observed and different treatments were evaluated to establish low viability cultures (cell death-induced control). Distinct viability markers and their ideal concentrations (titration) were appraised. Ethanol treatment showed to be the best death-inducing control. CFDA and TOPRO markers revealed to be the best choice for detecting live and dead mycoplasma frequencies, respectively. The standardized methodology was applied to Mycoplasma arginini, M. hyorhinis, M. orale, Spiroplasma citri and Acholeplasma laidlawii. Significant statistical difference was observed in the percentage of viable cells in comparison to ethanol treatment for A. laidlawii in CFDA and in both markers for M. gallisepticum, M. hyorhinis and S. citri. In summary, we standardized a flow cytometry assay for assessing M. gallisepticum - and potentially other species - viability and ultimately applied for reference material production improving the quality control of biological products.


Subject(s)
Mycoplasma gallisepticum , Tenericutes , Cell Culture Techniques , Flow Cytometry , Mycoplasma
5.
Microorganisms ; 8(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906848

ABSTRACT

Long-chain fatty acids (LCFA) are common contaminants in municipal and industrial wastewater that can be converted anaerobically to methane. A low hydrogen partial pressure is required for LCFA degradation by anaerobic bacteria, requiring the establishment of syntrophic relationships with hydrogenotrophic methanogens. However, high LCFA loads can inhibit methanogens, hindering biodegradation. Because it has been suggested that anaerobic degradation of these compounds may be enhanced by the presence of alternative electron acceptors, such as iron, we investigated the effect of sub-stoichiometric amounts of Fe(III) on oleate (C18:1 LCFA) degradation by suspended and granular methanogenic sludge. Fe(III) accelerated oleate biodegradation and hydrogenotrophic methanogenesis in the assays with suspended sludge, with H2-consuming methanogens coexisting with iron-reducing bacteria. On the other hand, acetoclastic methanogenesis was delayed by Fe(III). These effects were less evident with granular sludge, possibly due to its higher initial methanogenic activity relative to suspended sludge. Enrichments with close-to-stoichiometric amounts of Fe(III) resulted in a microbial community mainly composed of Geobacter, Syntrophomonas, and Methanobacterium genera, with relative abundances of 83-89%, 3-6%, and 0.2-10%, respectively. In these enrichments, oleate was biodegraded to acetate and coupled to iron-reduction and methane production, revealing novel microbial interactions between syntrophic LCFA-degrading bacteria, iron-reducing bacteria, and methanogens.

6.
Environ Sci Technol ; 52(11): 6497-6507, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29763542

ABSTRACT

Conversion of unsaturated long chain fatty acids (LCFA) to methane in continuous bioreactors is not fully understood. Palmitate (C16:0) often accumulates during oleate (C18:1) biodegradation in methanogenic bioreactors, and the reason why this happens and which microorganisms catalyze this reaction remains unknown. Facultative anaerobic bacteria are frequently found in continuous reactors operated at high LCFA loads, but their function is unclear. To get more insight on the role of these bacteria, LCFA conversion was studied under microaerophilic conditions. For that, we compared bioreactors treating oleate-based wastewater (organic loading rates of 1 and 3 kg COD m-3 d-1), operated under different redox conditions (strictly anaerobic-AnR, -350 mV; microaerophilic-MaR, -250 mV). At the higher load, palmitate accumulated 7 times more in the MaR, where facultative anaerobes were more abundant, and only the biomass from this reactor could recover the methanogenic activity after a transient inhibition. In a second experiment, the abundance of facultative anaerobic bacteria, particularly Pseudomonas spp. (from which two strains were isolated), was strongly correlated ( p < 0.05) with palmitate-to-total LCFA percentage in the biofilm formed in a continuous plug flow reactor fed with very high loads of oleate. This work strongly suggests that microaeration stimulates the development of facultative bacteria that are critical for achieving LCFA conversion to methane in continuous bioreactors. Microbial networks and interactions of facultative and strict anaerobes in microbial communities should be considered in future studies.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Bacteria , Bacteria, Anaerobic , Fatty Acids
7.
Microb Biotechnol ; 9(4): 514-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27273786

ABSTRACT

Long-chain fatty acids (LCFA) can inhibit methane production by methanogenic archaea. The effect of oleate and palmitate on pure cultures of Methanosaeta concilii and Methanosarcina mazei was assessed by comparing methane production rates from acetate before and after LCFA addition. For both methanogens, a sharp decrease in methane production (> 50%) was observed at 0.5 mmol L(-1) oleate, and no methane was formed at concentrations higher than 2 mmol L(-1) oleate. Palmitate was less inhibitory than oleate, and M. concilii was more tolerant to palmitate than M. mazei, with 2 mmol L(-1) palmitate causing 11% and 64% methanogenic inhibition respectively. This study indicates that M. concilii and M. mazei tolerate LCFA concentrations similar to those previously described for hydrogenotrophic methanogens. In particular, the robustness of M. concilii might contribute to the observed prevalence of Methanosaeta species in anaerobic bioreactors used to treat LCFA-rich wastewater.


Subject(s)
Acetates/metabolism , Methanosarcina/drug effects , Methanosarcina/metabolism , Methanosarcinales/drug effects , Methanosarcinales/metabolism , Oleic Acid/toxicity , Palmitates/toxicity , Anaerobiosis , Bioreactors/microbiology , Methane/metabolism , Wastewater/microbiology
8.
J. bras. urol ; 6(1): 67-8, jan.-mar. 1980. tab
Article in Portuguese | LILACS | ID: lil-100119

ABSTRACT

Os autores valorizam a determinaçäo da fosfatase ácida no aspirado da medula óssea do ilíaco em pacientes portadores de câncer de próstata


Subject(s)
Middle Aged , Humans , Male , Acid Phosphatase , Prostatic Neoplasms/diagnosis , Ilium/analysis , Bone Marrow/enzymology
9.
J. bras. urol ; 6(1): 69-70, jan.-mar. 1980. tab
Article in Portuguese | LILACS | ID: lil-100120

ABSTRACT

Os autores relatam os resultados inciais da determinaçäo dos níveis das proteínas no aspirado da medula do osso ilíaco, em portadores de câncer da próstata


Subject(s)
Humans , Male , Prostatic Neoplasms/diagnosis , Proteins/analysis , Ilium/analysis , Bone Marrow/analysis
SELECTION OF CITATIONS
SEARCH DETAIL