Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 123(1): 65, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133827

ABSTRACT

The selection process for advanced therapies in patients with inflammatory bowel diseases (IBDs) must prioritize safety, especially when considering new biologic agents or oral molecule modulators. In C57BL/6 mice, oral infection with Toxoplasma gondii induces intestinal inflammation through excessive tumor necrosis factor (TNF) production, making TNF neutralization a potential therapeutic intervention. Considering this, the present study aimed to evaluate the therapeutic effects of BmooMP-α-I, a snake venom metalloprotease isolated from Bothrops moojeni, which could promote TNF hydrolysis, in treating T. gondii-induced ileitis. The results showed that C57BL/6 mice orally infected with 50 cysts of T. gondii from the Me49 strain and treated with BmooMP-α-I exhibited prolonged survival and improved morbidity scores. Additionally, the treatment ameliorated both the macroscopic and microscopic aspects of the intestine, reduced macrophage influx, and decreased the production of inflammatory mediators by mesenteric lymph node cells. These findings provide compelling experimental evidence supporting the ability of BmooMP-α-I to alleviate ileal inflammation. Considering that the currently available therapeutic protocols are not completely effective and often result in side effects, the exploration of alternative strategies involving novel therapeutic agents, as demonstrated in this study, has the potential to significantly enhance the quality of life for patients suffering from inflammatory bowel diseases.


Subject(s)
Inflammatory Bowel Diseases , Toxoplasma , Toxoplasmosis , Humans , Animals , Mice , Quality of Life , Mice, Inbred C57BL , Inflammation/drug therapy , Toxoplasmosis/pathology , Metalloproteases , Models, Theoretical
2.
Parasitol Int ; 84: 102394, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34044107

ABSTRACT

Toxoplasmosis is able to cause death and/or sequelae in foetuses from pregnant women and immunocompromised individuals. The early diagnosis, able to differentiate acute from chronic phases, is essential to define the treatment against this disease and minimize the risk of complications. Here we describe a peptide derived from microneme 8 (pMIC8) protein of Toxoplasma gondii, able to distinguish the phase of infection. By using human and mice serum samples with different infection times, we assessed the ability of pMIC8 to interact with antibodies present in early of infection, and compared the results obtained with soluble antigen of T. gondii (STAg). The results showed that pMIC8 was recognized more precisely with antibodies present in serum samples from individuals with time of infection below 3 months, followed by those between 4 and 6 months of infection. Based on these results, it is possible to conclude that the association of immunoassays using STAg and pMIC8 as antigen preparations can be used to distinguish acute from chronic infections.


Subject(s)
Biomarkers/blood , Cell Adhesion Molecules/blood , Protozoan Proteins/blood , Toxoplasma/physiology , Toxoplasmosis/diagnosis , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Peptides/chemistry , Seroepidemiologic Studies , Serologic Tests , Toxoplasmosis/parasitology
3.
Front Med (Lausanne) ; 6: 227, 2019.
Article in English | MEDLINE | ID: mdl-31681783

ABSTRACT

Toxoplasmosis is an opportunistic infectious disease and may present a fatal outcome for human bone marrow transplant (BMT) recipients, due to the rapid disease course in immunosuppressed individuals. Several reports about occurrence of toxoplasmosis after BMT have been published in the literature, but this disease has been associated mainly due to reactivation of latent infection rather than primary infection. Even though there are reports of acute toxoplasmosis in recipients who were seronegative for T. gondii, suggesting transmission of infection after BMT, the source of infection in those cases has not been clearly demonstrated, whether it is due to the transplantation procedure by itself or from environmental source. Thus, the present study aimed to observe if it could be possible to demonstrate the parasite's ability to infect bone marrow (BM) cells and cause toxoplasmosis, when using an experimental model. Our results showed that 11% of hematopoietic and 7.1% of nonhematopoietic lineages may become infected when using in vitro experiments. Also, in vivo experiments demonstrated that, when C57BL/6 mice were infected with RH-RFP or ME-49-GFP T. gondii strains, the BM cells may be infected at different time points of infection. The parasites were detected by both fluorescent microscopy and qPCR. Also, when those BM samples were collected and used for BMT, the transplanted animals presented high rates of mortality and 87.5% of them became seropositive for T. gondii. Taken together, our results clearly demonstrated that it is possible to acquire primary T. gondii infection from the donor cells after BMT. Therefore, we are emphasizing that, before transplantation, serological screening for T. gondii infection from both donors and recipients, in addition to DNA search for this parasite from donor bone marrow cells, are necessary procedures to avoid the risk of T. gondii infection for immunocompromised patients.

4.
PLoS One ; 14(9): e0222575, 2019.
Article in English | MEDLINE | ID: mdl-31536570

ABSTRACT

Respiratory infection can be exacerbated by the high glucose concentration in the airway surface liquid (ASL). We investigated the effects of salbutamol and phlorizin on the pulmonary function, oxidative stress levels and SGLT1 activity in lung, pulmonary histopathological damages and survival rates of rats with sepsis. Sepsis was induced by cecal ligation and puncture surgery (CLP). Twenty-four hours after surgery, CLP rats were intranasally treated with saline, salbutamol or phlorizin. After 2 hours, animals were anesthetized and sacrificed. Sepsis promoted atelectasis and bronchial inflammation, and led to increased expression of SGLT1 on cytoplasm of pneumocytes. Salbutamol treatment reduced bronchial inflammation and promoted hyperinsuflation in CLP rats. The interferon-ɤ and Interleucin-1ß concentrations in bronchoalveolar lavage (BAL) were closely related to the bronchial inflammation regulation. Salbutamol stimulated SGLT1 in plasma membrane; whereas, phlorizin promoted the increase of SGLT1 in cytoplasm. Phlorizin reduced catalase activity and induced a significant decrease in the survival rate of CLP rats. Taken together, sepsis promoted atelectasis and lung inflammation, which can be associated with SGLT1 inhibition. The loss of function of SGLT1 by phlorizin are related to the augmented disease severity, increased atelectasis, bronchial inflammation and a significant reduction of survival rate of CLP rats. Alternatively salbutamol reduced BAL inflammatory cytokines, bronchial inflammation, atelectasis, and airway damage in sepsis. These data suggest that this selective ß2-adrenergic agonist may protect lung of septic acute effects.


Subject(s)
Acute Lung Injury/drug therapy , Albuterol/pharmacology , Phlorhizin/pharmacology , Pneumonia/drug therapy , Sepsis/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Disease Models, Animal , Lung/drug effects , Lung/metabolism , Male , Oxidative Stress/drug effects , Pneumonia/metabolism , Rats , Rats, Wistar , Sepsis/metabolism , Severity of Illness Index , Sodium-Glucose Transporter 1/metabolism
5.
Mediators Inflamm ; 2019: 5195134, 2019.
Article in English | MEDLINE | ID: mdl-31467484

ABSTRACT

It has been described that the metalloprotease BmooMP-alpha-I purified from Bothrops moojeni snake venom is able to hydrolyze the TNF molecule. However, this observation has been based mainly on in vitro investigation, in addition to molecular modeling and docking approaches. Considering that there is no in vivo study to demonstrate the biological effects of this enzyme, the major aim to the present work was to investigate whether the BmooMP-alpha-I has any anti-inflammatory efficacy by setting up a murine experimental design of colitis induced by dextran sulfate sodium (DSS). For this purpose, C57BL/6 mice were divided into six groups, as follows: (i) animals without intestinal inflammation, (ii) animals without intestinal inflammation treated with BmooMP-alpha-I (50 µg/animal/day), and (iii) animals with intestinal inflammation induced by 3% of DSS, (iv) mice with intestinal inflammation induced by DSS and treated with BmooMP-alpha-I enzyme at the 50, 25, or 12.5 µg/animal/day dosages by intraperitoneal route. Clinical signs of colitis were observed daily for calculating the morbidity scores, cytokine measurements, and histological features. We observed that the animals treated with different doses of the enzyme presented a remarkable improvement of colitis signs, as confirmed by a significant increase of the intestine length in comparison to the DSS group. Also, no difference was observed between the groups treated with the enzyme or vehicle, as the colon length of these animals was slightly lower than that of the group of healthy animals, without induction of intestinal inflammation. The cytokine quantification in supernatants of intestinal tissue homogenates showed a significant reduction of 38% in IFN-gamma levels, when the animals were treated with 50 µg of the BmooMP-alpha-I compared to the animals receiving DSS only. A significant reduction of 39% in TNF levels was also observed in all doses of treatment with BmooMP-alpha-I, in addition to a significant reduction of 35% in the amount of IL-12p40. Histological examinations revealed that the BmooMP-alpha-I 50 µg treated group preserved colon architecture and goblet cells and reduced the ulcer area, when compared with DSS mice, which showed typical inflammatory changes in tissue architecture, such as ulceration, crypt dilation, loss of tissue architecture, and goblet cell depletion, accompanied by a significant cell infiltration. In conclusion, our results suggest that the improvement of clinical scores and histological findings related to BmooMP-alpha-I treatment in this experimental model could be attributed to the metalloprotease ability to modulate cytokine production locally at the inflamed intestine. These findings highlight the potential anti-inflammatory role and effectiveness of this enzyme as a therapeutic alternative in this type of immunopathological condition.


Subject(s)
Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/toxicity , Metalloendopeptidases/therapeutic use , Animals , Bothrops , Colitis/metabolism , Cytokines/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...