Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Model ; 27(9): 249, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34387739

ABSTRACT

The development of bifunctional catalysts is of great interest in fine chemistry, since they are capable of promoting multicatalytic reactions involved in several important industrial processes. Iron oxyhydroxides have been identified as low-cost bifunctional catalysts. However, their applications are limited due to their weak acid character. Thus, elaborated modifications of these systems can significantly contribute to increasing their activities and selectivity. This work consists in the study, through DFT calculations, of the properties of the bulk and the surface of feroxyhyte (δ-FeOOH) doped with niobium, as a potential bifunctional catalyst. We identified the formation of stronger van der Waals interactions among the doped δ-FeOOH layers, which can increase the thermal stability of the catalyst. In addition, evidence has been found that the insertion of Nb increases Brönsted acidity and gives rise to new Lewis acid sites on the catalyst surface.

2.
Comb Chem High Throughput Screen ; 19(4): 334-44, 2016.
Article in English | MEDLINE | ID: mdl-27012528

ABSTRACT

During World War II, organophosphorus compounds with neurotoxic action were developed and used as the basis for the development of structures currently used as pesticides in the agricultural industry. Among the nerve agents, Tabun, Sarin, Soman and VX are the most important. The factor responsible for the high toxicity of organophosphorus (OP) is the acetylcholinesterase inhibition. However, one of the characterized enzymes capable of degrading OP is Phosphotriesterase (PTE). This enzyme has generated considerable interest for applications of rapid and complete detoxification. Due to the importance of bioremediation methods for the poisoning caused by OP, this work aims to study the interaction mode between the PTE enzyme and organophosphorus compounds, in this case, Sarin, Soman, Tabun and VX have been used, which are potent acetylcholinesterase inhibitors, taking into account the enantiomers "Rp" and " Sp" of each compound, with the Sp-enantiomers presenting the higher toxicity. With that, we were able to demonstrate the existence of the stereochemical preference by PTE in these compounds. With the purpose of increasing the speed of the hydrolysis mechanism, we have proposed a modification in the enzyme active site structure, where Zn(2+) ions were substituted by Al(3+) ions. To analyze the stability of Al(3+) ions in the wild-type PTE active site, MD simulations were also performed. This mutation brought relevant results; in this case, there was a reduction of the reaction energy barrier for all the compounds, mainly for VX in which the reaction presented lower activation energy values, and consequently, a faster hydrolysis process.


Subject(s)
Metals/chemistry , Organophosphorus Compounds/metabolism , Phosphoric Triester Hydrolases/metabolism , Aluminum , Catalytic Domain , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/toxicity , Hydrolysis , Kinetics , Molecular Docking Simulation , Organophosphates/metabolism , Organophosphates/toxicity , Organophosphorus Compounds/toxicity , Organothiophosphorus Compounds/metabolism , Organothiophosphorus Compounds/toxicity , Sarin/metabolism , Sarin/toxicity , Soman/metabolism , Soman/toxicity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL