Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260982

ABSTRACT

A 12.4 kDa laminarin (LM) composed of ß(1→3)-glucan with ß(1→6)-branches was extracted from brown seaweed Lobophora variegata and modified via carboxylation using dielectric barrier discharge (LMC), conjugation with gallic acid (LMG), and sulfation (LMS). Analyses of the chemical composition of LMC, LMG, and LMS yielded 11.7% carboxyl groups, 1.5% gallic acid, and 1.4% sulfate content, respectively. Antioxidant activities of native and modified laminarins were assessed using six different in vitro methods. Sulfation stopped the antioxidant activities of LM. On the other hand, carboxylation improved cooper chelation (1.2 times). LMG was found to be a more efficient antioxidant agent than LM in terms of copper chelation (1.3 times), reducing power (1.3 times), and total antioxidant capacity (80 times). Gallic acid conjugation was further confirmed using Fourier transform infrared spectroscopy (FT-IR) and one- and two-dimensional NMR spectroscopy analyses. LMG also did not induce cell death or affect the cell cycle of Madin-Darby canine kidney (MDCK) cells. On the contrary, LMG protected MDCK cells from H2O2-induced oxidative damage. Taken together, these results show that LMG has the potent antioxidant capacity, and, therefore, potential applications in pharmacological and functional food products.

2.
Biomolecules ; 10(9)2020 08 25.
Article in English | MEDLINE | ID: mdl-32854282

ABSTRACT

Corn cob is an agricultural byproduct that produces an estimated waste burden in the thousands of tons annually, but it is also a good source of xylan, an important bioactive polysaccharide. Silver nanoparticles containing xylan (nanoxylan) were produced using an environmentally friendly synthesis method. To do this, we extracted xylan from corn cobs using an ultrasound technique, which was confirmed by both chemical and NMR analyses. This xylan contained xylose, glucose, arabinose, galactose, mannose, and glucuronic acid in a molar ratio of 50:21:14:9:2.5:2.5, respectively. Nanoxylan synthesis was analyzed using UV-vis spectroscopy at kmax = 469 nm and Fourier transform infrared spectroscopy (FT-IR), which confirmed the presence of both silver and xylan in the nanoxylan product. Dynamic light scattering (DLS) and atomic force microscopy (AFM) revealed that the nanoxylan particles were ~102.0 nm in size and spherical in shape, respectively. DLS also demonstrated that nanoxylan was stable for 12 months and coupled plasma optical emission spectrometry (ICP-OES) showed that the nanoxylan particles were 19% silver. Nanoxylan reduced Leishmania amazonensis promastigote viability with a half maximal inhibitory concentration (IC50) value of 25 µg/mL, while xylan alone showed no effective. Additionally, nanoxylan exhibited antifungal activity against Candida albicans (MIC = 7.5 µg/mL), C. parapsilosis (MIC = 7.5 µg/mL), and Cryptococcus neoformans (MIC = 7.5 µg/mL). Taken together, these data suggest that it is possible to synthesize silver nanoparticles using xylan and that these nanoxylan exert improved antileishmanial and antifungal activities when compared to the untreated polysaccharide or silver nitrate used for their synthesis. Thus, nanoxylan may represent a promising new class of antiparasitic agents for use in the treatment of these microorganisms.


Subject(s)
Antifungal Agents/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Metal Nanoparticles/chemistry , Silver/chemistry , 3T3 Cells , Animals , Antifungal Agents/chemistry , Antiprotozoal Agents/chemistry , Candida albicans/drug effects , Candida parapsilosis/drug effects , Cryptococcus neoformans/drug effects , Drug Stability , Dynamic Light Scattering , Excipients/chemistry , Excipients/isolation & purification , Green Chemistry Technology/methods , Humans , Leishmania mexicana/drug effects , Metal Nanoparticles/ultrastructure , Mice , Microbial Sensitivity Tests , Particle Size , Reducing Agents/chemistry , Reducing Agents/isolation & purification , Spectrophotometry , Xylans/chemistry , Xylans/isolation & purification , Xylans/ultrastructure , Zea mays/chemistry
3.
Int J Nanomedicine ; 15: 965-979, 2020.
Article in English | MEDLINE | ID: mdl-32103950

ABSTRACT

BACKGROUND: Chagas disease, also known as American Trypanosomiasis, is caused by the protozoan Trypanosoma cruzi. It is occurring in Americas, including USA and Canada, and Europe and its current treatment involves the use of two drugs as follows: benznidazole (BNZ) and nifurtimox, which present high toxicity and low efficacy during the chronic phase of the disease, thus promoting the search for more effective therapeutic alternatives. Amongst them xylan, a bioactive polysaccharide, extracted from corn cob. METHODS: Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FITR), Raman spectroscopy, energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, atomic force microscopy, plasma optical emission spectroscopy (ICP-OES), dynamic light scattering (DLS) have been used to characterize the silver-xylan nanoparticles (NX). Their cytotoxicity was evaluated with 3-bromo(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) test. MTT and flow cytometry were used to ascertain the anti-Trypanosoma cruzi activity. RESULTS: UV-Vis spectroscopy gave plasmon resonance ranging between 400 and 450 nm while FITC and Raman spectroscopy proved nano interface functionalized with xylan. ICP-OES data showed NX with xylan (81%) and silver (19%). EDS showed NX consisting of carbon (59.4%), oxygen (26.2%) and silver (4.8%) main elements. Spherical NX of 55 nm average size has been depicted with SEM and AFM, while DLS showed 102 ± 1.7 nm NX. The NX displayed negligible cytotoxicity (2000 µg/mL). NX (100 µg/mL) was more effective, regardless of experiment time, in affecting the ability of parasites to reduce MTT than BZN (100 µg/mL). In addition, NX (100 µg/mL) induced death of 95% of parasites by necrosis. CONCLUSION: This is the first time silver nanoparticles are presented as an anti-Trypanosoma cruzi agent and the data point to the potential application of NX to new preclinical studies in vitro and in vivo.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Xylans/chemistry , Animals , Chagas Disease/drug therapy , Dynamic Light Scattering , Metal Nanoparticles/therapeutic use , Mice , Microscopy, Atomic Force , RAW 264.7 Cells , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Trypanocidal Agents/chemical synthesis , Zea mays/chemistry
4.
Int J Biol Macromol ; 93(Pt A): 57-65, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27543345

ABSTRACT

Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , 3T3 Cells , Adenocarcinoma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Fucose/chemistry , Green Chemistry Technology , HEK293 Cells , Humans , Kidney Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Mice , Polysaccharides/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...