Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172072, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575033

ABSTRACT

The use of biomarkers in fish for biomonitoring is a valuable approach to reveal effects of human impacts on biota health. Top predator fish are effective models for monitoring human activities' impacts on aquatic ecosystems. The Guaraguaçu River is the largest river-system on coastal region of South Brazil and a World Heritage site. The river receives contaminants from disorderly urban growth, including discharges of domestic sewage and small fishery boats, particularly during the tourist season. Our study aimed to assess impact of anthropogenic activities on water quality in the Guaraguaçu River by analyzing environmental contamination biomarkers in the top fish predator Hoplias malabaricus. Fish were collected using a fyke net trap across sectors representing a gradient of anthropic impact: sector 1 - pristine; sector 2 - impacted; and sector 3 - less impacted. Water samples were collected to analyze the presence of trace elements and pesticide. Biomarkers of the antioxidant system, histopathology, genotoxicity, neurotoxicity, and concentration of trace elements were analyzed in fish tissues. In water samples Al, Fe and Mn were detected, but no pesticides were found. In fish muscle, zinc and iron were detected. Brain acetylcholinesterase activity decreased in impacted sectors, indicating neurotoxic effects. The antioxidant system increased activity in gills and liver, and damage from lipoperoxidation was observed, particularly in sector 2 when compared to sector 1, suggesting oxidative stress. Histopathological biomarkers revealed lesions in the liver and gills of fish in impacted sectors. Micronuclei, a genotoxicity biomarker, were observed in organisms from all sectors. Our results demonstrate detrimental effects of poor water quality on biota health, even when contaminants are not detected in water.


Subject(s)
Biomarkers , Environmental Monitoring , Water Pollutants, Chemical , Water Quality , Animals , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Brazil , Biomarkers/metabolism , Rivers/chemistry , Fishes
2.
Sci Total Environ ; 924: 171680, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38479529

ABSTRACT

The 2,4-Dichlorophenoxyacetic acid (2,4-D) is a low-cost herbicide to eradicate broadleaf weeds. Since the development of 2,4-D resistant transgenic crops, it has been described as one of the most widely distributed pollutants in the world, increasing concern about its environmental impacts. This study aimed to elucidate the antioxidant system response in animals exposed to 2,4-D by different routes of exposure. It focused on determining if tissue, phylogenetic group, and herbicide formulation would influence the antioxidant mechanisms. A careful literature search of Scopus, WoS, and Science Direct retrieved 6983, 24,098, and 20,616 articles, respectively. The dataset comprised 390 control-treatment comparisons and included three routes of exposure: transgenerational, oral, and topical. The data set for transgenerational and oral exposure revealed oxidative stress through a decrease in enzymatic activities and the level of molecules of the antioxidant system. In contrast, topical exposure increased the oxidative stress. Tissue-specific analyses revealed that the transgenerational effects reduced hepatic catalase (CAT) activity. Oral exposure caused a variety of effects, including increased CAT activity in the prostate and decreased activity in various tissues. Mammals predominate in the transgenerational and oral groups, showing a significantly reduced activity of the antioxidant system. In contrast, in the topical exposure, an increased activity of oxidative stress biomarkers was observed in fish, earthworms, and mollusks. The effects of the 2,4-D formulation on oxidative stress responses showed significant differences between pure and commercial formulations, with oral exposure resulting in decreased activity and topical exposure increasing responses. In summary, orally exposed animals exhibited a clear decrease in enzyme activities, transgenerational exposure elicited tissue-specific prompted biochemical reductions, and topical exposure induced increased responses, emphasizing the need for unbiased exploration of the effects of 2,4-D on biomarkers of oxidative stress while addressing publication bias in oral and topical datasets.


Subject(s)
Antioxidants , Herbicides , Animals , Male , Antioxidants/metabolism , Herbicides/pharmacology , Phylogeny , Oxidative Stress , Biomarkers/metabolism , 2,4-Dichlorophenoxyacetic Acid/toxicity , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione Transferase/metabolism , Mammals/metabolism
3.
Article in English | MEDLINE | ID: mdl-38377663

ABSTRACT

Outside of scientific circles, climate change is a hotly debated topic due to all its consequences. Changes in the temperature can affect aquatic organisms and it is important to understand and to detect earlier signals. This study aimed to analyze how a Neotropical fish species responds to temperature increases, using proteomic analysis as a tool. For this, fish of the species Rhamdia quelen, male and female, were exposed to two temperatures: 25 °C and 30 °C. After 96 h, the animals were anesthetized, euthanized and the liver was collected for proteomic analysis. Using freely available online software and databases (e.g. MetaboAnalyst, Gene Ontology and UniProt), we define the altered proteins in both sexes: 42 in females and 62 in males. Data are available via ProteomeXchange with identifier PXD046475. Differences between the two temperatures were observed mainly in the amino acid metabolic pathways. The cellular process and the immune response was altered, indicating that effects at lower levels of biological organization could serve as a predictor of higher-level effects when temperature rise affects wildlife populations. Thus, we conclude that the increase in temperature is capable of altering important cellular and physiological processes in R. quelen fish, with this response being different for males and females.


Subject(s)
Catfishes , Fish Proteins , Proteomics , Temperature , Animals , Catfishes/metabolism , Male , Female , Fish Proteins/metabolism , Fish Proteins/genetics , Proteome/analysis , Climate Change , Fresh Water
4.
Fish Physiol Biochem ; 50(2): 477-494, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38112904

ABSTRACT

Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects. Thus, it is necessary to understand how different species respond to temperature. This study aimed to evaluate how the Neotropical catfish species Rhamdia quelen responds to temperature increases. The fish were exposed to temperatures of 25 °C (control) and 30 °C after gradual temperature increase for 7 days. After 96 h in each temperature, the fish were anesthetized, blood was collected, and after euthanasia, brain, liver, posterior kidney, gills, muscle, and gonads were collected. The gonads were used for sexing, while other tissues were used for the hematological, biochemical, genotoxic, and histopathological biomarkers analysis. Hepatic proteomic analysis with a focus on energy production was also carried out. Blood parameter changes in both sexes, including an increase in glucose in males, leukopenia in females, and genotoxicity in both sexes. Hepatic proteins related to energy production were altered in both sexes, but mainly in males. Others biomarker alterations, such as histopathological, were not observed in other tissues; however, the antioxidant system was affected differently between sexes. These showed that R. quelen juveniles, at temperatures higher than its optimum temperature such as 30 °C, has several sublethal changes, such as hematological alterations, antioxidant system activation, and energetic metabolism alteration, especially in males. Thus, short-term temperature rise can affect females and males of R. quelen differently.


Subject(s)
Catfishes , Water Pollutants, Chemical , Male , Female , Animals , Catfishes/physiology , Temperature , Antioxidants/metabolism , Biodiversity , Proteomics , Euthanasia, Animal , Liver/metabolism
5.
Chemosphere ; 336: 139216, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37321459

ABSTRACT

Ciprofloxacin (CIP) is an antibiotic commonly used in human and veterinary medicine. It is present in the aquatic environment, but we still know very little about its effect on non-targeted organisms. This study aimed to evaluate the effects of long-term exposure to environmental CIP concentrations (1, 10, and 100 µg.L-1) in males and females of Rhamdia quelen. After 28 days of exposure, we collected the blood for the analysis of hematological and genotoxic biomarkers. Additionally, we measured 17 ß-estradiol and 11 keto-testosterone levels. After the euthanasia, we collected the brain and the hypothalamus to analyze acetylcholinesterase (AChE) activity and neurotransmitters, respectively. The liver and gonads were assessed for biochemical, genotoxic, and histopathological biomarkers. At 100 µg.L-1 CIP, we observed genotoxicity in the blood, nuclear morphological changes, apoptosis, leukopenia, and a reduction of AChE in the brain. In the liver was observed oxidative stress and apoptosis. At 10 µg.L-1 CIP, leukopenia, morphological changes, and apoptosis were presented in the blood and a reduction of AChE in the brain. Apoptosis, leukocyte infiltration, steatosis, and necrosis occurred in the liver. Even at the lowest concentration (1 µg.L-1), adverse effects such as erythrocyte and liver genotoxicity, hepatocyte apoptosis, oxidative stress, and a decrease in somatic indexes were observed. The results showed the importance of monitoring CIP concentrations in the aquatic environment that cause sublethal effects on fish.


Subject(s)
Catfishes , Leukopenia , Water Pollutants, Chemical , Animals , Male , Humans , Female , Ciprofloxacin/pharmacology , Acetylcholinesterase , Liver , Biomarkers , Water Pollutants, Chemical/toxicity
6.
Chemosphere ; 313: 137387, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436576

ABSTRACT

Alkylphenols ethoxylates are industrial surfactants, and the release in the environmental matrices produces degraded products, of which nonylphenol (NP) and octylphenol (OP) were the most common. They can be classified as endocrine disruptors since the estrogenic potential is widely recognized, but some others toxic aspects are in discussion. This study aimed to evaluate the toxicity of NP, OP, and mixtures of both through cellular, biochemical and genetic biomarkers in fish gonadal cell line RTG-2 exposed to nominal concentrations of 0.05; 0.5; 5; 50, and 100 µg mL-1 of each chemical and their mixtures of 0.05, 0.5; 5 µg mL-1 concentrations. After 24 h, the cells were collected for cytotoxic (neutral red - NR; crystal violet - CV, resazurin assay - RA and lactate-dehydrogenase - LDH), antioxidant system (glutathione-s-transferase - GST; superoxide-dismutase - SOD; glutathione-peroxidase - GPx and malondialdehyde - MDA) and genotoxic assays (alkaline comet assay and Fpg-modified alkaline comet assay). The chemicals and their mixtures were cytotoxic at 50 and 100 µg mL-1, in general aspect, but LDH showed cytotoxicity since 0.05 µg mL-1. The GST and SOD showed an activity increase trend in most tested groups, while GPx decreased at 5 µg mL-1 of the mixture. The MDA increase in all groups resulted in lipid peroxidation. The reactive oxygen species caused DNA damage for all groups. The tested chemicals and concentrations have been found in the freshwater systems. They can induce cell toxicity in several parameters that could impair the gonadal tissues considering the RTG-2 responses.


Subject(s)
Antioxidants , Oxidative Stress , Animals , Catalase/metabolism , Antioxidants/metabolism , DNA Damage , Superoxide Dismutase/metabolism , Lipid Peroxidation , Glutathione/metabolism , Cell Line , Glutathione Peroxidase/metabolism
7.
Environ Sci Pollut Res Int ; 30(1): 622-639, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35904744

ABSTRACT

Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L-1) in artificially contaminated water for 96 and 168 h. Although the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concentrations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.


Subject(s)
Ciprofloxacin , Ecosystem , Ciprofloxacin/metabolism , Biodegradation, Environmental , Hydrogen Peroxide/metabolism , Plants/metabolism , Water/metabolism
8.
Environ Pollut ; 300: 118935, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35131333

ABSTRACT

Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 µg.L-1) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 µg.L-1. In addition, at 100 µg.L-1, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.


Subject(s)
Catfishes , Water Pollutants, Chemical , Animals , Catfishes/physiology , Ciprofloxacin/toxicity , Gills , Liver , Water Pollutants, Chemical/toxicity
9.
Chemosphere ; 286(Pt 1): 131639, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34346330

ABSTRACT

Metals are one of the contaminants released from the increase of anthropic activities. They can be classified as endocrine disruptors once they can affect the reproductive parameters of different organisms. The aim of the study was to evaluate the potential effects of cadmium on regulatory reproduction axis (Hypothalamic-Pituitary-Gonadal-Liver, the HPGL axis) in females of Rhamdia quelen exposed to nominal concentrations of 0.1; 1; 10 and 100 µg.L-1 of cadmium. After 15 days, tissues were collected for hormonal quantification, brain aromatase (cyp19a1b), hepatic vitellogenin (vtg) gene expression, and biomarkers analysis. Cadmium was quantified in water, gonad and liver samples. The plasma levels of estradiol, testosterone and gonad and hepatosomatic indexes did not changed after Cd exposure. The cyp19a1b was not different among the groups. Cadmium was detected at higher concentrations in the liver compared to the gonads. No genotoxicity was observed, only erythrocytes nuclear alterations. Metallothionein was reduced at 10 µg.L-1 in the liver and 10 and 100 µg.L-1 in the gonad. Hepatic superoxide dismutase activity increased and this can lead to a hydrogen peroxide increase, one of reactive oxygen species. This increase without a compensation of other enzymes of the antioxidant system can lead to lipoperoxidation, as occurred at 100 µg.L-1. Hepatic vitellogenin gene expression increased as well as the injury index at 0,1 and 100 µg.L-1. The tested cadmium concentrations have been found in the freshwater ecosystems and can affect the female reproductive regulation axis HPGL of the Neotropical species R. quelen.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Ecosystem , Endocrine Disruptors/toxicity , Female , Gonads , Liver , Reproduction , Vitellogenins/genetics , Water Pollutants, Chemical/toxicity
10.
Brain Res ; 1767: 147557, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34107278

ABSTRACT

Neuropathic pain, depression, and anxiety are common comorbidities in diabetic patients, whose pathophysiology involves hyperglycemia-induced increased oxidative stress. Bixin (BIX), an apocarotenoid extracted from the seeds of Bixa orellana, has been used in traditional medicine to treat diabetes and has been recognized by its antioxidant profile. We aimed to investigate the effect of the BIX over the mechanical allodynia, depressive, and anxious-like behaviors associated with experimental diabetes, along with its involved mechanisms. Streptozotocin-induced diabetic rats were treated for 17 days (starting 14 days after diabetes induction) with the corresponding vehicle, BIX (10, 30 or 90 mg/kg; p.o), or INS (6 IU; s.c.). Mechanical allodynia, depressive, and anxious-like behavior were assessed by electronic Von Frey, forced swimming, and elevated plus-maze tests, respectively. Locomotor activity was assessed by the open field test. Blood glycated hemoglobin (HbA1) and the levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were evaluated on the hippocampus, pre-frontal cortex, lumbar spinal cord, and sciatic nerve. Diabetic animals developed mechanical allodynia, depressive and anxious-like behavior, increased plasma HbA1, increased LPO, and decreased GSH levels in tissues analyzed. Repeated BIX-treatment (at all tested doses) significantly attenuated mechanical allodynia, the depressive (30 and 90 mg/kg) and, anxious-like behaviors (all doses) in diabetic rats, without changing the locomotor performance. BIX (at all tested doses) restored the oxidative parameters in tissues analyzed and reduced the plasma HbA1. Thereby, bixin may represent an alternative for the treatment of comorbidities associated with diabetes, counteracting oxidative stress and plasma HbA1.


Subject(s)
Carotenoids/pharmacology , Hyperalgesia/drug therapy , Animals , Antioxidants/pharmacology , Anxiety/drug therapy , Carotenoids/metabolism , Depression/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Glutathione/pharmacology , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Hippocampus/metabolism , Hyperalgesia/metabolism , Hyperglycemia , Lipid Peroxidation , Male , Neuralgia/drug therapy , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Sciatic Nerve/metabolism , Streptozocin/pharmacology
11.
Environ Res ; 195: 110308, 2021 04.
Article in English | MEDLINE | ID: mdl-33068573

ABSTRACT

The Estuarine-Lagoon Complex of Iguape-Cananéia (ELCIC), a Marine Protected Area (MPA) in Brazil, was the focus of this study that aimed to relate external levels of exposure to contaminants to toxic effects on Gobioides broussonnetii fish. Different anthropogenic contaminants such as metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs) were analyzed in the sediments; and biochemical, histopathological and genotoxicity biomarkers evaluated in fish; in two different seasons at three sites of the estuarine region. Higher contamination of the sediments was observed near the main urban center (Iguape city - IG). Metal concentrations were considered low to moderate, while PAHs concentrations were considered low. The concentrations of PPCPs increased due to the anthropogenic presence and were higher near IG and the Cananéia Island (CI). Contributions from historical mining, agriculture, nautical activities, oil, sewage and waste disposal, biomass and fossil fuels combustion were identified. Higher concentrations of metals and PPCPs were observed during the cold-dry season, suggesting influences of the lower hydrodynamics during the season of lower precipitation. Higher PAHs concentrations occurred in the hot-rainy season, indicating influences of greater human presence in summer. In fish, biological responses followed the same spatial and seasonal pattern. More pronounced changes in antioxidant, biotransformation, histopathological and genotoxic biomarkers were observed in IG and CI. The multivariate analysis and the integrated biomarkers response index (IBR) also evidenced worse environmental conditions in these sites. This result can indicate a negative influence of anthropogenic activities on the contamination of sediments and on the biological responses of fish. This study presented the first ecotoxicological data for the species and suggested that these chronic exposures can cause adverse effects on this fish population. The data contribute to the understanding of local environmental quality and can be applied in the future to the environmental and social management of marine protected areas.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Brazil , Cities , Environmental Monitoring , Geologic Sediments , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
Environ Toxicol Pharmacol ; 82: 103551, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33227412

ABSTRACT

The aquatic environment is the major recipient of wastes containing nanoparticles and other contaminants. Titanium dioxide nanoparticles (NPTiO2) are one of the most produced and used nanoparticle worldwide. This study investigated the toxicity of NPTiO2, as well as the toxicity interaction between NPTiO2 and lead (Pb), in response to genetic and biochemical biomarkers using freshwater fish Rhamdia quelen, as an animal model. The results showed genotoxicity in blood and kidney tissues. No effect of NPTiO2 alone or in co-exposure with Pb on liver genotoxicity were observed. Alterations in the antioxidant hepatic enzymes activities, as well as alterations in glutathione levels indicated that NPTiO2 alone or in co-exposure with Pb can cause antioxidant imbalance. The lipid peroxidation was also raised after exposure to NPTiO2. In general, the results of this study indicated that both NPTiO2 alone and their co-exposure with Pb are capable of producing significant toxic effects in short-term exposure.


Subject(s)
Catfishes , Lead/toxicity , Mutagens/toxicity , Nanoparticles/toxicity , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Catfishes/blood , Catfishes/genetics , Catfishes/metabolism , Comet Assay , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Micronucleus Tests
13.
Aquat Toxicol ; 232: 105738, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33465619

ABSTRACT

Prorocentrum lima is a cosmopolitan benthic dinoflagellate capable of producing the diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and dinophysistoxin (DTX). These compounds may cause oxidative stress and accumulate in bivalve tissues, which become vectors of intoxication to human consumers. We investigated DST accumulation, detoxification and oxidative stress biomarkers in clams (Anomalocardia flexuosa) experimentally exposed to P. lima cells or their compounds. Experimental diets consisted of 6000 cells mL-1 of the non-toxic chlorophyte Tetraselmis sp. (C; control condition), and combinations of C with 10 P. lima cells mL-1 (T10), 100 P. lima cells mL-1 (T100), or to a toxin concentration of ∼4 µg OA L-1 and ∼0.65 µg DTX-1 L-1 (T100d). Clams were exposed to these diets for 7 days (uptake phase), followed by a 7-day depuration period. No DSTs were detected in clams exposed to treatments C (control) nor to T100d (dissolved compounds) during either uptake or detoxification phase. Conversely, clams exposed to T10 or T100 accumulated, on average, up to 2.5 and 35 µg DST kg-1 in their whole bodies at the end of the uptake phase. These concentrations are ∼64 and ∼4.5 times lower than the regulatory level of 160 µg OA kg-1, respectively. Accumulated OA quotas were 12-22 times higher in the digestive gland (DG) than in remaining tissues over the uptake phase. Quick toxin transformation was indicated by the early detection of conjugated compounds - DTX-1 and OA esters - in the DG after 6 h of exposure, with OA-ester representing the main compound (30 - 100 %) in that tissue over the experiment. During the depuration period, detoxification rates represented 0.024 h-1, 0.04 h-1 and 0.052 h-1 for OA, DTX-1 and OA-ester, respectively. The activities of catalase, glutathione S-transferase, glutathione peroxidase and the levels of oxidative stress by lipoperoxidation varied similarly in the DG of A. flexuosa individuals subjected to T100, T100d and the control condition. However, contrasting antioxidant responses were measured in those exposed to T10. These findings indicate that no oxidative stress was primarily induced by DST-producing dinoflagellates in this clam species under laboratory conditions representative of toxic bloom situations. Even though, possible interactions should be considered under multistressor scenarios.

14.
Chemosphere ; 238: 124616, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31466003

ABSTRACT

The Alagados Reservoir (Southern Brazil) is used as water supply, and since 2002 there have been reports with a presence of cyanobacterial blooms and cyanotoxins. In order to assess the water quality and the ecological integrity of the reservoir, we evaluated biochemical, genotoxic and osmoregulatory biomarkers in the freshwater cichlid fish (Geophagus brasiliensis) that were exposed to PSTs. The fish were sampled in the Alagados Reservoir in February 2016 (Summer) and were divided in three groups: 1) Reservoir group (RES): fish were collected immediately after sampling; 2) Depuration group (DEP): fish were submitted to the depuration experiment for 90 days in the laboratory; and 3) Reproduction group (REP): fish were kept in the laboratory until the fertilization and the chemical analyses were performed on the offspring (F1 generation). In the RES and DEP the blood, brain, muscle, liver and gills were collected for biochemical, genotoxic and osmoregulatory biomarkers analysis. Our results showed that the fish from the Alagados Reservoir (RES) presented oxidative stress and DNA damage; and after 90 days (DEP), the antioxidant system and DNA damage were recovered. Although PSTs were considered a risk to the ecological integrity of this water body; PSTs concentrations were not found in the tissues of the F1 generation. In addition, the biomarkers used were useful tools to evaluate the effects of environment contamination. Therefore, it is necessary to develop new technologies and monitoring programs in order to reduce cyanobaterial blooms, cyanotoxins and human activities that cause the contamination in aquatic environments.


Subject(s)
Biomarkers/analysis , Cichlids/metabolism , DNA Damage/drug effects , Seafood/analysis , Toxins, Biological/analysis , Water Pollutants, Chemical/analysis , Animals , Cichlids/growth & development , Environmental Monitoring , Humans , Toxins, Biological/toxicity , Water Pollutants, Chemical/toxicity
15.
Ecotoxicol Environ Saf ; 183: 109527, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31400723

ABSTRACT

Eutrophication is an ecological process that results in cyanobacterial blooms. Microcystin-LR is the most toxic variant of microcystins and may cause toxic effects in the organisms, mainly in hepatic tissues. The aims of this study were to use multiple biomarkers in order to evaluate the sublethal effects of a low concentration of MC-LR (1 µg/L) in fish Geophagus brasiliensis by waterborne exposure; and evaluate the depuration of this toxin during 15 days. A group of 30 fish was exposed to 1 µg/L of MC-LR solution for 96 h in a static bioassay. After this time, blood, brain, muscle, liver, gonad and gills were collected from half of the exposed fish group in order to evaluate chemical, biochemical, histological and genotoxic biomarkers. The rest of the fish group was submitted to the depuration experiment with free MC-LR water for 15 days. After this time the same tissues were collected and evaluated using biomarkers analysis. Toxic effects were found mostly in the fish liver from depuration time as alterations on the antioxidant system and histopathologies. The results showed that even low concentrations can cause sublethal effects to aquatic organisms, and cyanotoxins monitoring and regulation tools are required.


Subject(s)
Cichlids/metabolism , Microcystins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/blood , Biomarkers/metabolism , Cichlids/blood , Cichlids/genetics , Dose-Response Relationship, Drug , Eutrophication , Gills/drug effects , Gills/metabolism , Gonads/drug effects , Gonads/metabolism , Liver/drug effects , Liver/metabolism , Marine Toxins , Metabolic Clearance Rate , Microcystins/metabolism , Organ Specificity , Seafood , Water Pollutants, Chemical/metabolism
16.
Ecotoxicol Environ Saf ; 182: 109438, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31310901

ABSTRACT

The nonsteroidal anti-inflammatory drugs (NSAIDs) are amongst the most commonly detected classes of pharmaceuticals in freshwater environments, with paracetamol being the most abundant. The aim of this study was to evaluate the possible toxic effects of environmentally relevant concentrations (0.25, 2.5 and 25 µg.L-1) of paracetamol in Rhamdia quelen fish exposed for 14 days using different biomarkers. The total count of leukocytes and thrombocytes was reduced at the highest concentration. In the gills, all concentrations of paracetamol reduced the glutathione S-transferase (GST) activity and the reduced glutathione (GSH) levels compared to the control group. The activity of catalase (CAT) was not altered and glutathione peroxidase (GPx) activity increased at the highest concentrations. The superoxide dismutase (SOD) activity decreased at 25 µg.L-1 and the LPO levels increased at 2.5 µg.L-1 when compared to the control group. The concentration of ROS was not different among the groups. In the posterior kidney the activities of GST (2.5 µg.L-1), CAT (2.5 µg.L-1 and at 25 µg. L-1) and GPx and GSH levels increased at all concentrations when compared to the control group. The SOD activity and LPO levels did not change. Paracetamol caused genotoxicity in the blood and gills at concentrations of 2.5 µg.L-1 and in the posterior kidney at 2.5 and 25 µg.L-1. An osmoregulatory imbalance in plasma ions and a reduction in the carbonic anhydrase activity in the gills at 0.25 µg.L-1 were observed. Histopathological alterations occurred in the gills of fish exposed to 25 µg.L-1 and in the posterior kidney at 0.25 and 25 µg.L-1 of paracetamol. The integrated biomarker index showed that the stress caused by the concentration of 25 µg.L-1 was the highest one. These results demonstrated toxic effects of paracetamol on the gills and posterior kidneys of fish, compromising their physiological functions and evidencing the need for monitoring the residues of pharmaceuticals released into aquatic environment.


Subject(s)
Acetaminophen/toxicity , Catfishes/physiology , Water Pollutants, Chemical/toxicity , Animals , Anti-Inflammatory Agents, Non-Steroidal , Biomarkers/metabolism , Catalase , DNA Damage , Gills/drug effects , Glutathione/pharmacology , Glutathione Peroxidase , Glutathione Transferase
17.
Sci Total Environ ; 667: 371-383, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30831371

ABSTRACT

This study aimed to assess the water quality of the Perequê River, Porto Belo, Santa Catarina, Brazil, through a biomarker approach in the native fish species Geophagus brasiliensis, and the sediment chemical quantification of the herbicides glyphosate and bentazone used in irrigated rice plantations. This river is used for the public water supply of two municipalities. The first sampling (S1) was in November 2016, in the spring season and the second (S2), in March 2017, in the fall season. In each sampling, two points of the river were analyzed, one upstream of the accumulation dam and the water catchment point for water supply of the Porto Belo WTS (P1), and another downstream (P2) with water, sediment, and fish sampling. Biotransformation, oxidative stress, histopathological and genotoxic biomarkers were analyzed in different tissues. The presence of glyphosate was detected in the sediment (11.7 µg·kg-1) from the upstream point of the water catchment site (P1) in spring. The lower activity of the antioxidant enzyme superoxide dismutase (SOD), as well as the increased damage to renal DNA and hepatic tissue, coincided with the lower muscular and cerebral acetylcholinesterase activities (AChE) at P1, in relation to P2 in the spring season, with a lower rainfall index (81.8 mm3). A seasonal variation was also observed between the spring and fall seasons, in fish responses to biomarkers. Reduction of muscle AChE activity and biotransformation enzymes ethoxyresorufin-O-deethylase and glutathione S-transferase and antioxidant enzymes such as, SOD and glutathione peroxidase, as well as increased brain DNA damage, coincided with the highest number of tissue lesions in the liver and gills in the spring, regardless of the sampling point. The results suggested that the Perequê River is contaminated by xenobiotics and probably herbicides from irrigated rice plantations, indicating damages to the biota and a potential public health risk.


Subject(s)
Cichlids/physiology , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Brazil , Cytochrome P-450 CYP1A1/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Rivers/chemistry , Superoxide Dismutase/metabolism
18.
Environ Toxicol Pharmacol ; 67: 42-52, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30711874

ABSTRACT

Titanium dioxide nanoparticles (NpTiO2) are the most widely-used nanoparticle type and the adsorption of metals such as lead (PbII) onto their surface is a major source of concern to scientists. This study evaluated the effects of the associated exposure to both types of contaminant, i.e., lead (a known genotoxic metal) and NpTiO2, in a freshwater fish (Astyanax serratus) through intraperitoneal injection for an acute assay of 96 h. The effects of this exposure were evaluated using the comet assay, DNA diffusion assay and piscine micronucleus test, as well as the quantification of antioxidant enzymes (SOD, CAT, and GST) and metallothioneins. Our findings indicate that co-exposure of PbII with NpTiO2 can provoke ROS imbalances, leading to DNA damage in the blood and liver tissue of A. serratus, as well as modifying erythropoiesis in this species, inducing necrosis and changing the nuclear morphology of the erythrocytes.


Subject(s)
Characiformes/physiology , DNA Damage , Lead/toxicity , Nanoparticles/toxicity , Reactive Oxygen Species/metabolism , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Catalase/metabolism , Comet Assay , Drug Interactions , Glutathione Transferase/metabolism , Liver/drug effects , Liver/metabolism , Micronucleus Tests , Superoxide Dismutase/metabolism
19.
Chemosphere ; 219: 15-27, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30528969

ABSTRACT

This study combined data of the concentrations of metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal hygiene products (PPCPs) in the sediments and the biological responses of the Atherinella brasiliensis fish in two different sites and climate seasons in the Estuarine-Lagoon Complex of Iguape-Cananéia, Southeast Brazil. The presence of metals, PAHs, and PPCPs were observed in the sediments demonstrating the contamination throughout the system with contributions of sewage and residues disposal, oil and combustion of biomass and fossil fuels. Higher contaminations were identified in the point of greater human presence (C - Cananéia City), especially during the cold-dry season. The influence of anthropic activities and variations in the estuarine conditions, such as lower hydrodynamics during the lower rainfall period, were observed. In fish, spatial and seasonal changes in the parameters of oxidative stress and biotransformation, genotoxicity and histopathological alterations followed the same trend, with more pronounced responses in C in the cold-dry season. The biological responses of the fish revealed adverse effects in the local species population and indicated the presence of metals, PAHs and PPCPs as stressors. The multivariate analysis and the integrated biomarker response index (IBR) corroborated with these results, also indicating that site C had the worst environmental quality. The present study provides new information about the contamination of the sediments of Estuarine-Lagoon Complex of Iguape-Cananéia and the chronic exposure to contaminants in A. brasiliensis. Therefore, contributing to a better understanding of the local environmental quality with data that can support protective management of the area.


Subject(s)
Environmental Monitoring/methods , Estuaries , Fishes/metabolism , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Animals , Brazil , Cities , Environmental Pollutants/analysis , Humans , Seasons , Sentinel Species
20.
Sci Total Environ ; 651(Pt 2): 3222-3229, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30463170

ABSTRACT

Paralytic shellfish Toxins (PSTs) or saxitoxins are neurotoxins that block the neural transmission by binding to the voltage-gated sodium channels in the nerve cells. There are >50 analogues described, which could be biotransformed into a molecular form of greater or lesser toxicity. The Alagados Reservoir is used for water supply, and persistent cyanobacterial blooms as well as PSTs concentrations have been found in this water body since 2002. The aims of this study were to quantify the concentrations of PSTs in the water and fish samples from the Alagados Reservoir. In addition, we evaluated the elimination of PSTs for 90 days in fish and estimated the potential risk to human health. Water and fish samples were collected from the reservoir. For the water samples the phytoplankton and chemical analyses were carried out. Fish were divided into two sample times: Field Samples (FS) and Elimination Experiment Samples (EES), which were maintained for 90 days in filtered and dechlorinated water. For chemical analysis, the muscles of FS were collected on the fish sampling day and the muscles and feces of EES were collected at 7, 15, 30, 45, 60, 75 and 90 days. PSTs concentrations were present in water and fish samples, and they were estimated as a potential risk to humans; mainly for children. In addition, toxins were accumulated, biotransformed to other analogues and excreted by the fish. However, after 90 days, the toxins were still present in the water and fish muscle. Therefore, PSTs can remain for a long period in water, and fish can be a carrier of these neurotoxins. New approaches of monitoring and management are necessary in the actual global context of cyanobacteria and cyanotoxins.


Subject(s)
Marine Toxins/analysis , Shellfish Poisoning/epidemiology , Water Pollutants, Chemical/analysis , Water Pollution/statistics & numerical data , Water Supply/statistics & numerical data , Cyanobacteria , Humans , Phytoplankton , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...