Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Type of study
Language
Publication year range
1.
J Glob Antimicrob Resist ; 36: 389-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266960

ABSTRACT

BACKGROUND: Carbapenemase-producing Citrobacter freundii has been reported as a leading cause of healthcare-associated infections. Particularly, C. freundii belonging to the sequence type (ST) 18 is considered to be an emerging nosocomial clone. OBJECTIVES: To report the genomic background and phylogenomic analysis of a multidrug-resistant NDM-1-producing C. freundii ST18 (strain CF135931) isolated from an endangered green sea turtle affected by plastic pollution in Brazil. METHODS: Genomic DNA was extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Workbench, and in silico analysis accomplished by bioinformatics tools. For phylogenomic analysis, publicly available C. freundii (txid:546) genome assemblies were retrieved from the NCBI database. RESULTS: The genome size was calculated at 5 290 351 bp, comprising 5263 total genes, 4 rRNAs, 77 tRNAs, 11ncRNAs, and 176 pseudogenes. The strain belonged to C. freundii ST18, whereas resistome analysis predicted genes encoding resistance to ß-lactams (blaNDM-1, blaOXA-1, blaCMY-117, and blaTEM-1C), aminoglycosides (aph(3'')-Ib, aadA16, aph(3')-VI, aac(6')-Ib-cr, and aph(6)-Id), quinolones (aac(6')-Ib-cr), macrolides (mph(A) and erm(B)), sulphonamides (sul1 and sul2), tetracyclines (tetA and tetD), and trimethoprim (dfrA27). The phylogenomic analysis revealed that CF135931 strain is closely related to international human-associated ST18 clones producing NDM-1. CONCLUSION: Genomic surveillance efforts are necessary for robust monitoring of the emergence of drug-resistant strains and WHO critical priority pathogens within a One Health framework. In this regard, this draft genome and associated data can improve understanding of dissemination dynamics of nosocomial clones of carbapenemase-producing C. freundii beyond hospital walls. In fact, the emergence of NDM-1-producing C. freundii of global ST18 in wildlife deserves considerable attention.


Subject(s)
Cross Infection , Turtles , Animals , Humans , Citrobacter freundii/genetics , Anti-Bacterial Agents/pharmacology , Genomics , Repressor Proteins
2.
Front Vet Sci ; 8: 630989, 2021.
Article in English | MEDLINE | ID: mdl-33665220

ABSTRACT

Bovine tuberculosis (bTB) has yet to be eradicated in Brazil. Herds of cattle and buffalo are important sources of revenue to people living in the banks of the Amazon River basin. A better understanding of Mycobacterium bovis (M. bovis) populational structure and transmission dynamics affecting these animals can significantly contribute in efforts to improve their sanitary status. Herein, we sequenced the whole genome of 22 M. bovis isolates (15 from buffalo and 7 from cattle) from 10 municipalities in the region of the Lower Amazon River Basin in Brazil and performed phylogenomic analysis and Single Nucleotide Polymorphism (SNP)-based transmission inference to evaluate population structure and transmission networks. Additionally, we compared these genomes to others obtained in unrelated studies in the Marajó Island (n = 15) and worldwide (n = 128) to understand strain diversity in the Amazon and to infer M. bovis lineages. Our results show a higher genomic diversity of M. bovis genomes obtained in the Lower Amazon River region when compared to the Marajó Island, while no significant difference was observed between M. bovis genomes obtained from cattle and buffalo (p ≥ 0.05). This high genetic diversity is reflected by the weak phylogenetic clustering of M. bovis from the Lower Amazon River region based on geographic proximity and in the detection of only two putative transmission clusters in the region. One of these clusters is the first description of inter-species transmission between cattle and buffalo in the Amazon, bringing implications to the bTB control program. Surprisingly, two M. bovis lineages were detected in our dataset, namely Lb1 and Lb3, constituting the first description of Lb1 in South America. Most of the strains of this study (13/22) and all 15 strains of the Marajó Island carried no clonal complex marker, suggesting that the recent lineage classification better describe the diversity of M. bovis in the Amazon.

3.
Front Microbiol ; 11: 843, 2020.
Article in English | MEDLINE | ID: mdl-32477295

ABSTRACT

Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ∼2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.

4.
Front Microbiol, v. 11, 843, mai. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3064

ABSTRACT

Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ~2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.

5.
Front. Microbiol ; 11: 843, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17724

ABSTRACT

Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ~2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.

6.
BMC Genomics ; 20(1): 1030, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888476

ABSTRACT

BACKGROUND: Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis Complex (MTBC), is capable of infecting several host species, including humans. Recently, ancient DNA from this organism was recovered from pre-Columbian mummies of Peru, sparking debate over the origin and frequency of tuberculosis in the Americas prior to European colonization. RESULTS: We present the first comparative genomic study of this bacterial species, starting from the genome sequencing of two M. pinnipedii isolates (MP1 and MP2) obtained from different organs of a stranded South American sea lion. Our results indicate that MP1 and MP2 differ by 113 SNPs (single nucleotide polymorphisms) and 46 indels, constituting the first report of a mixed-strain infection in a sea lion. SNP annotation analyses indicate that genes of the VapBC family, a toxin-antitoxin system, and genes related to cell wall remodeling are under evolutionary pressure for protein sequence change in these strains. OrthoMCL analysis with seven modern isolates of M. pinnipedii shows that these strains have highly similar proteomes. Gene variations were only marginally associated with hypothetical proteins and PE/PPE (proline-glutamate and proline-proline-glutamate, respectively) gene families. We also detected large deletions in ancient and modern M. pinnipedii strains, including a few occurring only in modern strains, indicating a process of genome reduction occurring over the past one thousand years. Our phylogenomic analyses suggest the existence of two modern clusters of M. pinnipedii associated with geographic location, and possibly host species, and one basal node associated with the ancient M. pinnipedii strains. Previously described MiD3 and MiD4 deletions may have occurred independently, twice, over the evolutionary course of the MTBC. CONCLUSION: The presence of superinfection (i.e. mixed-strain infection) in this sea lion suggests that M. pinnipedii is highly endemic in this population. Mycobacterium pinnipedii proteomes of the studied isolates showed a high degree of conservation, despite being under genomic decay when compared to M. tuberculosis. This finding indicates that further genomes need to be sequenced and analyzed to increase the chances of finding variably present genes among strains or that M. pinnipedii genome remodeling occurred prior to bacterial speciation.


Subject(s)
Genome, Bacterial , Genomics , Mycobacterium/genetics , Sea Lions/microbiology , Superinfection , Tuberculosis/veterinary , Animals , Computational Biology/methods , Genetic Markers , Genomics/methods , Mycobacterium/classification , Mycobacterium/metabolism , Phylogeny , Proteome , Proteomics/methods , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...