Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543461

ABSTRACT

Next-generation high-performance polymers require consideration as sustainable solutions. Here, to satisfy these criteria, we propose to combine high-performance styrenic block copolymers, a class of thermoplastic elastomer, with cellulose derivatives as a reinforcing agent with the aim of maintaining and/or improving structural and surface properties. A great advantage of the proposed blends is, besides their biocompatibility, a decrease in environmental impact due to blending with a natural polymer. Particularly, we focus on identifying the effect of different blending compounds and blend ratios on the morphological, structural, thermal, mechanical, electrical and cytotoxic characteristics of materials. This research provides, together with novel material formulations, practical guidelines for the design and fabrication of next-generation sustainable high-performance polymers.

2.
Front Immunol ; 14: 1225549, 2023.
Article in English | MEDLINE | ID: mdl-37638054

ABSTRACT

Natural killer (NK) cells are lymphocytes of the innate immune system that play a key role in the elimination of tumor and virus-infected cells. Unlike T cells, NK cell activation is governed by their direct interaction with target cells via the inhibitory and activating receptors present on their cytoplasmic membrane. The simplicity of this activation mechanism has allowed the development of immunotherapies based on the transduction of NK cells with CAR (chimeric antigen receptor) constructs for the treatment of cancer. Despite the advantages of CAR-NK therapy over CAR-T, including their inability to cause graft-versus-host disease in allogenic therapies, a deeper understanding of the impact of their handling is needed in order to increase their functionality and applicability. With that in mind, the present work critically examines the steps required for NK cell isolation, expansion and storage, and analyze the response of the NK cells to these manipulations. The results show that magnetic-assisted cell sorting, traditionally used for NK isolation, increases the CD16+ population of NK cultures only if the protocol includes both, antibody incubation and passage through the isolation column. Furthermore, based on the importance of surface potential on cellular responses, the influence of surfaces with different net surface charge on NK cells has been evaluated, showing that NK cells displayed higher proliferation rates on charged surfaces than on non-charged ones. The present work highlights the relevance of NK cells manipulation for improving the applicability and effectiveness of NK cell-based therapies.


Subject(s)
Killer Cells, Natural , Receptors, Chimeric Antigen , Antibodies , Cell Membrane , Cell Separation , Cell- and Tissue-Based Therapy
3.
ACS Appl Mater Interfaces ; 15(26): 31206-31213, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37345791

ABSTRACT

Since neurons were first cultured outside a living organism more than a century ago, a number of experimental techniques for their in vitro maintenance have been developed. These methods have been further adapted and refined to study specific neurobiological processes under controlled experimental conditions. Despite their limitations, the simplicity and visual accessibility of 2D cultures have enabled the study of the effects of trophic factors, adhesion molecules, and biophysical stimuli on neuron function and morphology. Nevertheless, the impact of fundamental properties of the surfaces to which neurons adhere when cultured in vitro has not been sufficiently considered. Here, we used an electroactive polymer with different electric poling states leading to different surface charges to evaluate the impact of the net electric surface charge on the behavior of primary neurons. Average negative and positive surface charges promote increased metabolic activity and enhance the maturation of primary neurons, demonstrating the relevance of considering the composition and electric charge of the culture surfaces. These findings further pave the way for the development of novel therapeutic strategies for the regeneration of neural tissues, particularly based on dynamic surface charge variation that can be induced in the electroactive films through mechanical solicitation.


Subject(s)
Neurons , Polymers
4.
Biomacromolecules ; 24(3): 1121-1130, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36754364

ABSTRACT

Silk fibroin (SF) is a biocompatible natural protein with excellent mechanical characteristics. SF-based biomaterials can be structured using a number of techniques, allowing the tuning of materials for specific biomedical applications. In this study, SF films, porous membranes, and electrospun membranes were produced using solvent-casting, salt-leaching, and electrospinning methodologies, respectively. SF-based materials were subjected to physicochemical and biological characterizations to determine their suitability for tissue regeneration applications. Mechanical analysis showed stress-strain curves of brittle materials in films and porous membranes, while electrospun membranes featured stress-strain curves typical of ductile materials. All samples showed similar chemical composition, melting transition, hydrophobic behavior, and low cytotoxicity levels, regardless of their architecture. Finally, all of the SF-based materials promote the proliferation of human umbilical vein endothelial cells (HUVECs). These findings demonstrate the different relationship between HUVEC behavior and the SF sample's topography, which can be taken advantage of for the design of vascular implants.


Subject(s)
Fibroins , Humans , Fibroins/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Human Umbilical Vein Endothelial Cells , Porosity , Silk/chemistry , Tissue Engineering
5.
Front Bioeng Biotechnol ; 10: 1044667, 2022.
Article in English | MEDLINE | ID: mdl-36338140

ABSTRACT

Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive ß-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.

6.
Int J Biol Macromol ; 219: 374-383, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35914555

ABSTRACT

Soft materials are attracting much attention for the development of biostructures able to mimic the movement of natural systems by remote actuation. Multi-sensitive hydrogels are among the best materials for obtaining dynamic and biocompatible soft structures for soft actuators and related biomedical devices. Nevertheless, bioinks based on naturally occurring and stimuli responsive hydrogels able to be 3D printed continues being a challenge for advanced applications. In this work 3D printable electrically and magnetically responsive, non-cytotoxic, hybrid hydrogels based on alginate and zero monovalent iron nanoparticles (NPs) are presented. The effect of NPs addition on the physico-chemical properties of the hydrogels is addressed, together with its effect on the functional electroactive and magnetoactive response. NPs concentration up to 10 % do not affect the mechanical stability of the gels, while promoting an increase actuation response.


Subject(s)
Hydrogels , Nanoparticles , Alginates/chemistry , Hydrogels/chemistry , Iron
7.
Gels ; 8(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36005079

ABSTRACT

In situ-forming, biodegradable, and self-healing hydrogels, which maintain their integrity after damage, owing to dynamic interactions, are essential biomaterials for bioapplications, such as tissue engineering and drug delivery. This work aims to develop in situ, biodegradable and self-healable hydrogels based on dynamic covalent bonds between N-succinyl chitosan (S-CHI) and oxidized aldehyde hyaluronic acid (A-HA). A robust effect of the molar ratio of both S-CHI and A-HA was observed on the swelling, mechanical stability, rheological properties and biodegradation kinetics of these hydrogels, being the stoichiometric ratio that which leads to the lowest swelling factor (×12), highest compression modulus (1.1·10−3 MPa), and slowest degradation (9 days). Besides, a rapid (3 s) self-repairing ability was demonstrated in the macro scale as well as by rheology and mechanical tests. Finally, the potential of these biomaterials was evidenced by cytotoxicity essay (>85%).

8.
Int J Biol Macromol ; 216: 291-302, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35798076

ABSTRACT

Biocompatible and biodegradable hydrogels with biomimetic properties, such as self-repairing, are increasingly interesting for biomedical applications, particularly when they can be printed or in situ formed to mimic extracellular matrix or as personalized implantable devices in tissue regeneration or drug delivery. Photocrosslinkable hydrogels based on methacrylated chitosan (CHIMe) and hyaluronic acid that exhibit according with their composition, tuneable physico-chemical properties are here presented. The study of the conversion, gelation time, mechanical and rheological properties of photopolymerized CHIMe showed an optimal phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) initiator feed (0.1 % w). These photocrosslinkable hydrogels demonstrated being able to promote doubly crosslinked hydrogels with similar Young Moduli regardless the cycles of self-healing processes, and tailored swelling (25-70 swelling factor), mechanical (1 × 10-4-2 × 10-2 MPa) and rheological properties, as a function of polysaccharides relative content. Clear evidences have been found that fast photopolymerization of CHIMe/HA solutions leads to biocompatible (>80 % cell viability), biodegradable (20-24 days in hydrolytic medium) and robust self-healable hydrogels suitable for advanced biomedical and tissue engineering applications.


Subject(s)
Chitosan , Hydrogels , Chitosan/chemistry , Extracellular Matrix , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Tissue Engineering
9.
Polymers (Basel) ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35160639

ABSTRACT

Three-dimensional (3D) printing represents a suitable technology for the development of biomimetic scaffolds for biomedical and tissue engineering applications. However, hydrogel-based inks' printability remains a challenge due to their restricted print accuracy, mechanical properties, swelling or even cytotoxicity. Chitosan is a natural-derived polysaccharide that has arisen as a promising bioink due to its biodegradability, biocompatibility, sustainability and antibacterial properties, among others, as well as its ability to form hydrogels under the influence of a wide variety of mechanisms (thermal, ionic, pH, covalent, etc.). Its poor solubility at physiological pH, which has traditionally restricted its use, represents, on the contrary, the simplest way to induce chitosan gelation. Accordingly, herein a NaOH strong base was employed as gelling media for the direct 3D printing of chitosan structures. The obtained hydrogels were characterized in terms of morphology, chemical interactions, swelling and mechanical and rheological properties in order to evaluate the influence of the gelling solution's ionic strength on the hydrogel characteristics. Further, the influence of printing parameters, such as extrusion speed (300, 600 and 800 mm/min) and pressure (20-35 kPa) and the cytocompatibility were also analyzed. In addition, printed gels show an electro-induced motion due to their polycationic nature, which highlights their potential as soft actuators and active scaffolds.

10.
Int J Biol Macromol ; 188: 820-832, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34371046

ABSTRACT

Multifunctional printable biomaterials are at the base of advanced biomedical applications. Chitosan (CHI) and hyaluronic acid (HA) allow the development of polycomplex hydrogels with tailorable properties, including self-healing and controlled drug release. This work correlates and optimizes the mucoadhesive, swelling, biodegradation, mechanical and rheological properties of HA/CHI polycomplex hydrogels with synthesis parameters such as polysaccharide content and complexation time, according to the interaction forces established between both polyelectrolytes. Related to these dynamic forces, the self-healing ability of the hydrogels was investigated together with the potential of the HA/CHI polycomplex hydrogels for 3D printing. Finally, their capability to modulate and promote controlled release of a variety of drugs (anionic and anti-inflammatory sodium diclofenac and the neutral antibiotic rifampicin) was demonstrated. Thus, the reported tunable properties, self-repair ability, printability and drug release properties, demonstrate the suitability of HA/CHI hydrogels for advanced biomedical applications.


Subject(s)
Chitosan/chemistry , Drug Liberation , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional , Adhesiveness , Animals , Cell Death , Diclofenac/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Injections , Mice , Polyelectrolytes/chemistry , Rheology , Rifampin/pharmacology , Spectroscopy, Fourier Transform Infrared , Static Electricity , Time Factors , Viscosity
11.
Nat Biomed Eng ; 5(12): 1457-1471, 2021 12.
Article in English | MEDLINE | ID: mdl-34031557

ABSTRACT

Athletic performance relies on tendons, which enable movement by transferring forces from muscles to the skeleton. Yet, how load-bearing structures in tendons sense and adapt to physical demands is not understood. Here, by performing calcium (Ca2+) imaging in mechanically loaded tendon explants from rats and in primary tendon cells from rats and humans, we show that tenocytes detect mechanical forces through the mechanosensitive ion channel PIEZO1, which senses shear stresses induced by collagen-fibre sliding. Through tenocyte-targeted loss-of-function and gain-of-function experiments in rodents, we show that reduced PIEZO1 activity decreased tendon stiffness and that elevated PIEZO1 mechanosignalling increased tendon stiffness and strength, seemingly through upregulated collagen cross-linking. We also show that humans carrying the PIEZO1 E756del gain-of-function mutation display a 13.2% average increase in normalized jumping height, presumably due to a higher rate of force generation or to the release of a larger amount of stored elastic energy. Further understanding of the PIEZO1-mediated mechanoregulation of tendon stiffness should aid research on musculoskeletal medicine and on sports performance.


Subject(s)
Athletic Performance , Ion Channels , Rodentia , Tendons , Animals , Extracellular Matrix , Humans , Ion Channels/genetics , Membrane Proteins , Rats , Stress, Mechanical , Tendons/physiology
12.
Biophys J ; 120(5): 764-772, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33524370

ABSTRACT

Among the stimuli to which cells are exposed in vivo, it has been shown that tensile deformations induce specific cellular responses in musculoskeletal, cardiovascular, and stromal tissues. However, the early response of cells to sustained substrate-based stretch has remained elusive because of the short timescale at which it occurs. To measure the tensile mechanical properties of adherent cells immediately after the application of substrate deformations, we have developed a dynamic traction force microscopy method that enables subsecond temporal resolution imaging of transient subcellular events. The system employs a novel, to our knowledge, tracking approach with minimal computational overhead to compensate substrate-based, stretch-induced motion/drift of stretched single cells in real time, allowing capture of biophysical phenomena on multiple channels by fluorescent multichannel imaging on a single camera, thus avoiding the need for beam splitting with the associated loss of light. Using this tool, we have characterized the transient subcellular forces and nuclear deformations of single cells immediately after the application of equibiaxial strain. Our experiments reveal significant differences in the cell relaxation dynamics and in the intracellular propagation of force to the nuclear compartment in cells stretched at different strain rates and exposes the need for time control for the correct interpretation of dynamic cell mechanics experiments.


Subject(s)
Mechanical Phenomena , Biophysical Phenomena , Microscopy, Atomic Force , Stress, Mechanical
13.
Biomaterials ; 249: 120034, 2020 08.
Article in English | MEDLINE | ID: mdl-32315865

ABSTRACT

Appropriate macrophage response to an implanted biomaterial is crucial for successful tissue healing outcomes. In this work we investigated how intrinsic topological cues from electrospun biomaterials and extrinsic mechanical loads cooperate to guide macrophage activation and macrophage-tendon fibroblast cross-talk. We performed a series of in vitro and in vivo experiments using aligned or randomly oriented polycaprolactone nanofiber substrates in both mechanically loaded and unloaded conditions. Across all experiments a disorganized biomaterial fiber topography was alone sufficient to promote a pro-inflammatory signature in macrophages, tendon fibroblasts, and tendon tissue. Extrinsic mechanical loading was found to strongly regulate the character of this signature by reducing pro-inflammatory markers both in vitro and in vivo. We observed that macrophages generally displayed a stronger response to biophysical cues than tendon fibroblasts, with dominant effects of cross-talk between these cell types observed in mechanical co-culture models. Collectively our data suggest that macrophages play a potentially important role as mechanosensory cells in tendon repair, and provide insight into how biological response might be therapeutically modulated by rational biomaterial designs that address the biomechanical niche of recruited cells.


Subject(s)
Macrophage Activation , Polyesters , Macrophages , Tendons
14.
Sci Rep ; 10(1): 4824, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179778

ABSTRACT

Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we generate large numbers of free-floating GUVs through the rehydration of lipid films deposited on soft polyacrylamide (PAA) gels. We show that this technique produces high GUV concentrations for a range of lipid types, including charged ones, independently of the ionic strength of the buffer used. We demonstrate that the gentle hydration of PAA gels results in predominantly unilamellar vesicles, which is in contrast to comparable methods analyzed in this work. Unilamellarity is a defining feature of GUVs and the generation of uniform populations is key for many downstream applications. The PAA method is widely applicable and can be easily implemented with commonly utilized laboratory reagents, making it an appealing platform for the study of membrane biophysics.

15.
Matrix Biol ; 89: 11-26, 2020 07.
Article in English | MEDLINE | ID: mdl-31917255

ABSTRACT

Although the molecular mechanisms behind tendon disease remain obscure, aberrant stromal matrix turnover and tissue hypervascularity are known hallmarks of advanced tendinopathy. We harness a tendon explant model to unwind complex cross-talk between the stromal and vascular tissue compartments. We identify the hypervascular tendon niche as a state-switch that gates degenerative matrix remodeling within the tissue stroma. Here pathological conditions resembling hypervascular tendon disease provoke rapid cell-mediated tissue breakdown upon mechanical unloading, in contrast to unloaded tendons that remain functionally stable in physiological low-oxygen/-temperature niches. Analyses of the stromal tissue transcriptome and secretome reveal that a stromal niche with elevated tissue oxygenation and temperature drives a ROS mediated cellular stress response that leads to adoption of an immune-modulatory phenotype within the degrading stromal tissue. Degradomic analysis further reveals a surprisingly rich set of active matrix proteases behind the progressive loss of tissue mechanics. We conclude that the tendon stromal compartment responds to aberrant mechanical unloading in a manner that is highly dependent on the vascular niche, with ROS gating a complex proteolytic breakdown of the functional collagen backbone.


Subject(s)
Proteome/metabolism , Reactive Oxygen Species/metabolism , Tendons/cytology , Tendons/pathology , Animals , Cell Communication , Collagen/metabolism , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Male , Mice , Proteolysis , Proteome/genetics , Sequence Analysis, RNA , Stress, Mechanical , Tendons/metabolism , Tissue Culture Techniques
16.
Bio Protoc ; 10(21): e3807, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33659461

ABSTRACT

Giant unilamellar vesicles (GUVs) are a widely used model system for a range of applications including membrane biophysics, drug delivery, and the study of actin dynamics. While several protocols have been developed for their generation in recent years, the use of these techniques involving charged lipid types and buffers of physiological ionic strength has not been widely adopted. This protocol describes the generation of large numbers of free-floating GUVs, even for charged lipid types and buffers of higher ionic strength, using a simple approach involving soft polyacrylamide (PAA) gels. This method entails glass cover slip functionalization with (3-Aminopropyl)trimethoxysilane (APTES) and glutaraldehyde to allow for covalent bonding of PAA onto the glass surface. After polymerization of the PAA, the gels are dried in vacuo. Subsequently, a lipid of choice is evenly dispersed on the dried gel surface, and buffers of varying ionic strength can be used to rehydrate the gels and form GUVs. This protocol is robust for the production of large numbers of free-floating GUVs composed of different lipid compositions under physiological conditions. It can conveniently be performed with commonly utilized laboratory reagents.

17.
ACS Appl Mater Interfaces ; 11(44): 41791-41798, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31589401

ABSTRACT

Understanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels. We further demonstrate the impact of the protein mat on the tensile stiffness characterization of adherent cells. To our knowledge, our study is the first to uncover direction-dependent mechanical behavior of the protein coatings and to demonstrate that it affects cellular response relative to substrate mechanics.

18.
Int J Dev Biol ; 63(1-2): 1-8, 2019.
Article in English | MEDLINE | ID: mdl-30919911

ABSTRACT

Although rare among the general population, bone malignancies have a high rate of incidence among children and adolescents and are associated with high mortality rates. Osteosarcoma (also known as osteogenic sarcoma) is the most frequent primary cancer of bone and shows a high tendency to metastasize to the lung. Despite the frequent use of osteosarcoma-derived cell lines in basic biomechanical research and for the evaluation of cell responses to new biomaterials, the mechanical phenotype and the differences between osteosarcoma cells and related cell types, such as mesenchymal cells, osteoblasts and osteocytes, remain largely unknown. In the present review we summarize current knowledge of the biophysical and mechanical properties of the niche of primary osteosarcomas and of the malignant cells, and discuss the impact of these features on the progression of malignancy.


Subject(s)
Bone Neoplasms/pathology , Osteosarcoma/pathology , Tumor Microenvironment , Animals , Disease Progression , Humans , Phenotype
19.
Mol Biol Cell ; 30(7): 887-898, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30785850

ABSTRACT

Osteosarcoma is the most frequent primary tumor of bone and is characterized by its high tendency to metastasize in lungs. Although treatment in cases of early diagnosis results in a 5-yr survival rate of nearly 60%, the prognosis for patients with secondary lesions at diagnosis is poor, and their 5-yr survival rate remains below 30%. In the present work, we have used a number of analytical methods to investigate the impact of increased metastatic potential on the biophysical properties and force generation of osteosarcoma cells. With that aim, we used two paired osteosarcoma cell lines, with each one comprising a parental line with low metastatic potential and its experimentally selected, highly metastatic form. Mechanical characterization was performed by means of atomic force microscopy, tensile biaxial deformation, and real-time deformability, and cell traction was measured using two-dimensional and micropost-based traction force microscopy. Our results reveal that the low metastatic osteosarcoma cells display larger spreading sizes and generate higher forces than the experimentally selected, highly malignant variants. In turn, the outcome of cell stiffness measurements strongly depends on the method used and the state of the probed cell, indicating that only a set of phenotyping methods provides the full picture of cell mechanics.


Subject(s)
Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/physiopathology , Biomechanical Phenomena/physiology , Bone Neoplasms/pathology , Cell Line, Tumor , Humans , Microscopy, Atomic Force/methods , Neoplasm Metastasis/physiopathology
20.
BMC Cancer ; 19(1): 83, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654764

ABSTRACT

BACKGROUND: Fascin-1, a prominent actin-bundling protein, is found to be upregulated in several human carcinomas. While it is accepted that Fascin-1 expression correlates with poor clinical outcome and decreased survival in various carcinomas, its role in sarcoma such as osteosarcoma (OS) remains unknown. In the present study, we evaluated the prognostic value and biological relevance of Fascin-1 in OS. METHODS: The correlation between Fascin-1 expression and the outcome of OS patients was determined by immunohistochemistry analysis of Fascin-1 expression in a tissue microarray of OS tissue specimens collected during primary tumor resection. To examine the effect of Fascin-1, shRNA and overexpression technology to alter Fascin-1 levels in OS cells were used in cellular assays as well as in intratibial xenograft OS models in SCID mice. RESULTS: Kaplan-Meier survival analysis of Fascin-1 expression in OS tumor specimens revealed a direct relationship between Fascin-1 expression and poor patient survival. Furthermore, overexpression of Fascin-1 in OS cells significantly increased their migratory capacity as well as the activity of the matrix metalloprotease MMP-9, known to be critical for the execution of metastasis. Finally, using relevant xenograft mouse models, orthotopic intratibial transplantation of two different OS cell lines overexpressing Fascin-1 promoted tumor growth and lung metastasis. CONCLUSIONS: Collectively, our findings demonstrate for the first time that Fascin-1 has considerable potential as a novel prognostic biomarker in OS, and suggest that targeting of Fascin-1 might be a new anti-metastatic strategy in OS patient treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Neoplasms/pathology , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Osteosarcoma/pathology , Adolescent , Adult , Animals , Biomarkers, Tumor/genetics , Bone Neoplasms/mortality , Bone and Bones/pathology , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement , Child , Female , Humans , Male , Mice , Mice, SCID , Microfilament Proteins/genetics , Osteosarcoma/mortality , Prognosis , RNA, Small Interfering/metabolism , Survival Analysis , Tissue Array Analysis , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...