Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R562-R570, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35411800

ABSTRACT

The aim of the present study was to analyze the effects of traffic-related air pollution (TRAP) on markers of inflammatory, neuroplasticity, and endurance performance-related parameters in recreationally trained cyclists who were adapted to TRAP during a 50-km cycling time trial (50-km cycling TT). Ten male cyclists performed a 50-km cycling TT inside an environmental chamber located in downtown Sao Paulo (Brazil), under TRAP or filtered air conditions. Blood samples were obtained before and after the 50-km cycling TT to measure markers of inflammatory [interleukin-6 (IL-6), C-reactive protein (CRP), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1)] and neuroplasticity [brain-derived neurotrophic factor (BDNF)]. Rating of perceived exertion (RPE), heart rate (HR), and power output (PO) were measured throughout the 50-km cycling TT. There were no significant differences between experimental conditions for responses of IL-6, CRP, and IL-10 (P > 0.05). When compared with exercise-induced changes in filtered air condition, TRAP provoked greater exercise-induced increase in BDNF levels (TRAP = 3.3 ± 2.4-fold change; Filtered = 1.3 ± 0.5-fold change; P = 0.04) and lower exercise-induced increase in ICAM-1 (Filtered = 1.1 ± 0.1-fold change; TRAP = 1.0 ± 0.1-fold change; P = 0.01). The endurance performance-related parameters (RPE, HR, PO, and time to complete the 50-km cycling TT) were not different between TRAP and filtered air conditions (P > 0.05). These findings suggest that the potential negative impacts of exposure to pollution on inflammatory, neuroplasticity, and performance-related parameters do not occur in recreationally trained cyclists who are adapted to TRAP.


Subject(s)
Air Pollution , Athletic Performance , Bicycling , Physical Endurance , Air Pollution/adverse effects , Athletic Performance/physiology , Bicycling/physiology , Brain-Derived Neurotrophic Factor , Brazil , Humans , Inflammation , Intercellular Adhesion Molecule-1 , Interleukin-10 , Interleukin-6 , Male
2.
Sleep Breath ; 24(4): 1463-1472, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31898194

ABSTRACT

PURPOSE: Obstructive sleep apnea (OSA) is associated with multiple comorbid conditions including cardiovascular diseases and cancer. There is a growing interest in exploring biomarkers to understand the related mechanisms and improve the risk stratification of OSA. Circulating microRNAs (miRNAs) are single noncoding strands of nearly 22 nucleotides that posttranscriptionally regulate target gene expression. Our aim was to identify miRNA profiles associated with OSA. METHODS: We studied 48 male subjects, mostly Caucasian (63%) and overweight, divided by polysomnography into the no OSA control group (n = 6), mild OSA group (n = 12), moderate OSA group (n = 15), and severe OSA group (n = 15). The study groups were matched for age, body mass index (BMI), and body fat composition. miRNA profiles were measured from peripheral whole blood using two steps: (1) microarray analysis comprising more than 2500 miRNAs in a subsample of 12 subjects (three from each group); and (2) validation phase using real-time quantitative polymerase chain reaction (RTqPCR). RESULTS: The microarray assessment identified 21 differentially expressed miRNAs among the groups. The RT-qPCR assessment showed that miR-1254 and miR-320e presented a gradual increase in expression parallel to OSA severity. Linear regression analysis showed that severe OSA was independently associated with miR-1254 (ß = 68.4; EP = 29.8; p = 0.02) and miR-320e (ß = 76.1; EP = 31.3; p = 0.02). CONCLUSION: Severe OSA is independently associated with miRNAs that are involved in heart failure (miR-1254), myocardial ischemia/reperfusion (miR-320e), and cell proliferation in some cancer types (miR-1254 and miR-320e). Future investigations addressing whether these miRs may provide prognostic information in OSA are needed.


Subject(s)
Circulating MicroRNA/blood , Heart Failure/blood , Myocardial Ischemia/blood , Neoplasms/blood , Sleep Apnea, Obstructive/blood , Adult , Cell Proliferation , Heart Failure/complications , Humans , Male , Microarray Analysis , Middle Aged , Myocardial Ischemia/complications , Neoplasms/complications , Overweight/complications , Severity of Illness Index , Sleep Apnea, Obstructive/complications
4.
Oxid Med Cell Longev ; 2017: 1549014, 2017.
Article in English | MEDLINE | ID: mdl-29138674

ABSTRACT

We previously reported that aerobic exercise training (AET) consisted of 10 weeks of 60-min swimming sessions, and 5 days/week AET counteracts CH in obesity. Here, we evaluated the role of microRNAs and their target genes that are involved in heart collagen deposition and calcium signaling, as well as the cardiac remodeling induced by AET in obese Zucker rats. Among the four experimental Zucker groups: control lean rats (LZR), control obese rats (OZR), trained lean rats (LZR + TR), and trained obese rats (OZR + TR), heart weight was greater in the OZR than in the LZR group due to increased cardiac intramuscular fat and collagen. AET seems to exert a protective role in normalizing the heart weight in the OZR + TR group. Cardiac microRNA-29c expression was decreased in OZR compared with the LZR group, paralleled by an increase in the collagen volumetric fraction (CVF). MicroRNA-1 expression was upregulated while the expression of its target gene NCX1 was decreased in OZR compared with the LZR group. Interestingly, AET restored cardiac microRNA-1 to nonpathological levels in the OZR-TR group. Our findings suggest that AET could be used as a nonpharmacological therapy for the reversal of pathological cardiac remodeling and cardiac dysfunction in obesity.


Subject(s)
Heart/physiopathology , MicroRNAs/metabolism , Obesity/genetics , Obesity/therapy , Physical Conditioning, Animal/physiology , Animals , Male , Obesity/pathology , Obesity/physiopathology , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...