Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Leukoc Biol ; 106(1): 35-43, 2019 07.
Article in English | MEDLINE | ID: mdl-31091351

ABSTRACT

Intravascular hemolysis, in addition to reducing red cell counts, incurs extensive vascular inflammation and oxidative stress. One product of hemolysis, heme, is a potent danger associated molecular pattern (DAMP), activating leukocytes and inducing cytokine expression and processing, among other pro-inflammatory effects. We explored pathways by which heme-induced inflammation may be amplified under sterile conditions. Incubation of human Mϕs, differentiated from CD14+ cells, with heme induced time- and concentration-dependent gene and protein expression of S100A8, a myeloid cell-derived alarmin. Human Mϕ stimulation with recombinant S100A8, in turn, induced robust pro-IL-1ß expression that was dependent upon NF-κB activation, gene transcription, and partially dependent upon TLR4-mediated signaling. Moreover, heme itself stimulated significant Mϕ pro-IL-1ß gene and protein expression via an S100A8-mediated mechanism and greatly amplified S100A8-driven NLRP3 inflammasome-mediated IL-1ß secretion. In vivo, induction of acute intravascular hemolysis in mice induced a rapid elevation of plasma S100A8 that could be abolished by hemopexin, a heme scavenger. Finally, plasma S100A8 levels were found to be significantly elevated in patients with the inherited hemolytic anemia, sickle cell anemia, when compared with levels in healthy individuals. In conclusion, we demonstrate that hemolytic processes are associated with S100A8 generation and that some of the inflammatory effects of heme may be amplified by autocrine S100A8 production. Findings suggest a mechanism by which hemolytic inflammation could be propagated via leukocyte priming by endogenous proteins, even in sterile inflammatory environments such as those that occur in the hemolytic diseases. S100A8 may represent a therapeutic target for reducing inflammation in hemolytic disorders.


Subject(s)
Calgranulin A/physiology , Heme/pharmacology , Hemolysis/immunology , Inflammation/immunology , Macrophages/drug effects , Adult , Animals , Female , Humans , Interleukin-1beta/physiology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , NF-kappa B/antagonists & inhibitors , Toll-Like Receptor 4/physiology
2.
Inflamm Res ; 65(9): 665-78, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27251171

ABSTRACT

Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and ß-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.


Subject(s)
Alarmins/metabolism , Erythrocytes/metabolism , Inflammation/metabolism , Animals , Hemoglobins/metabolism , Hemolysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL