Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39094679

ABSTRACT

MicroRNAs play crucial regulatory roles in various aspects of development and physiology, including environmental adaptation and stress responses in teleosts. RT-qPCR is the most commonly used method for studying microRNA expression, with the accuracy and reliability of results depending on the use of an appropriate reference gene for normalization. This study aimed to evaluate seven miRNAs (U6, Let-7a, miR-23a, miR-25-3, miR-103, miR-99-5, and miR-455) expression stability in different tissues of Nile tilapia subjected to osmotic stress. Fish were divided into two groups: a control and an experimental group, raised in 0 and 12 ppt salinity water respectively. After 21 days, brain, gills, liver, and posterior intestine were collected for analysis. Different mathematical algorithms (geNorm, NormFinder, BestKeeper, and the comparative ΔCt method) were employed to identify the most suitable reference miRNAs. The results indicate that the miR-455/miR-23a combination is a robust reference for normalizing miRNA expression levels in studies of osmotic stress responses in Nile tilapia. The stability of miRNA expression can vary depending on specific stress conditions and biological processes, underscoring the necessity of selecting appropriate normalizing miRNAs for each experimental context. This study identifies reliable reference genes for future RT-qPCR analyses of miRNA expression, thereby enhancing our understanding of molecular responses in fish to environmental challenges. These insights are fundamental to the development of new technologies for the improved management and sustainability of aquaculture practices.


Subject(s)
Cichlids , MicroRNAs , Osmotic Pressure , Real-Time Polymerase Chain Reaction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cichlids/genetics , Cichlids/metabolism , Real-Time Polymerase Chain Reaction/standards , Reference Standards
2.
Environ Toxicol Pharmacol ; 110: 104539, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173985

ABSTRACT

This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg. L-1 for 96 h) significantly disrupts fertility, evidenced by changes in fertilization rates and egg diameter. Profiling of ovarian miRNAs identified a total 205 miRNAs in A. charrua. Among these, three miRNAs were upregulated (miR-10b-5p, miR-132-3p, miR-100-5p), while ten miRNAs were downregulated (miR-499-5p, miR-375, miR-205-5p, miR-206-3p, miR-203a-3p, miR-133b-3p, miR-203b-5p, miR-184, miR-133a-3p, miR-2188-5p) compared to non-exposed fish. This study reveals that differentially expressed miRNAs are linked to molecular pathways such as steroid hormone biosynthesis, lipid and carbohydrate metabolism, bioenergetics, and antioxidant defense. It also analyzes molecular interactions between miRNAs and target genes during RDT exposure in annual killifish, providing insights into biomarkers in ecotoxicology. Moreover, it provides scope for developing environmental health assessment models based on epigenomic endpoints, supporting the protection of biodiversity and ecosystem services through the quantification of stress responses in living organisms exposed to pesticides.

3.
Bull Environ Contam Toxicol ; 113(2): 17, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068350

ABSTRACT

Roundup Transorb® (RDT) is the most popular glyphosate-based herbicide (GHB) used in agriculture, and its impact extends to non-target organisms. The annual killifish Austrolebias charrua is an endangered species endemic to southern South America and inhabits temporary ponds. This study evaluates the effects of RDT concentrations (0.065 and 5 mg/L GAE) on A. charrua exposed for 96 h. Gene expression of cat, sod2, gstα, gclc, and ucp1 was evaluated on the liver and gills. Highlighting that even at low concentrations permitted by Brazilian legislation, the RDT can have adverse effects on A. charrua.


Subject(s)
Antioxidants , Glycine , Glyphosate , Herbicides , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Pilot Projects , Fundulidae/genetics , Gene Expression/drug effects , Superoxide Dismutase/metabolism , Liver/metabolism , Liver/drug effects , Brazil , Gills/metabolism , Killifishes
4.
Zebrafish ; 21(2): 155-161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621201

ABSTRACT

Currently, in Brazil, all researchers involved in animal experimentation must undergo training in laboratory animal science to stay updated on biology, methodology, ethics, and legal considerations related to the use of animals. The training program presented in this study not only aims to fulfill a legal obligation but also intends to train students and professionals to effectively care for their biomodels. It seeks to help them understand the importance of this care, both for the welfare of the animals and for the results of their projects. In total, 58 participants were present at the event (pre-event and full-time course). These participants consisted students and professionals from 11 institutions and 5 different countries. These numbers demonstrate the successful attainment of the desired capillarity in the scientific community and the posterior dissemination of knowledge. Through this course, it was possible to train the participants and raise their awareness about the importance of applying scientific knowledge in their daily practices to maintain the animals, ensuring the welfare of the models and refining the research. Finally, the program presented in this study, as well as the strategies adopted, can serve as a model for other institutions aiming to achieve similar results.


Subject(s)
Animal Experimentation , Laboratory Animal Science , Animals , Zebrafish , Brazil , Animal Welfare
5.
Ecotoxicology ; 33(6): 1-12, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38602608

ABSTRACT

The annual killifish Austrolebias charrua is an endangered species, endemic to the southern region of South America, which inhabits temporary ponds that emerges in the rainy season. The main anthropogenic threat driving the extinction of A. charrua stems from extensive agriculture, primarily due to the widrespread use of glyphosate-based herbicides near their habitats. Annual killifishes have been used as models for ecotoxicological studies but, up to now, there are no studies about reference genes in any Austrolebias species. This represents an obstacle to the use of qPCR-based technologies, the standard method for gene expression quantification. The present study aimed to select and validate potential reference genes for qPCR normalization in the annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. The candidate reference genes 18 s, actb, gapdh, ef1a, shox, eif3g, and the control gene atp1a1 were evaluated in male and female individuals in three different tissues (brain, liver, and gills) under two experimental conditions (control and acute exposition to Roundup Transorb®). The collected tissues were submitted to RNA extraction, followed by cDNA synthesis, cloning, sequencing, and qPCR. Overall, 18 s was the most stable reference gene, and 18 s and ef1a were the most stable combination. Otherwise, considering all variables, gapdh and shox were the least stable candidate genes. Foremost, suitable reference genes were validated in A. charrua, facilitating accurate mRNA quantification in this species, which might be useful for developing molecular tools of ecotoxicological assessment based on gene expression analysis for environmental monitoring of annual killifish.


Subject(s)
Endangered Species , Real-Time Polymerase Chain Reaction , Animals , Male , Female , Water Pollutants, Chemical/toxicity , Fundulidae/genetics , Environmental Monitoring/methods , Glyphosate , Sex Factors , Herbicides/toxicity , Killifishes
6.
Article in English | MEDLINE | ID: mdl-37977240

ABSTRACT

This study aimed to analyze the toxic effects of Roundup Transorb® on the endangered Neotropical annual killifish Austrolebias charrua through the assessment of molecular and biochemical biomarkers. The fish were collected in temporary ponds and exposed to environmentally realistic concentrations of the herbicide (5 mg.L-1 for 96 h). The production of ROS, lipid peroxidation, DNA damage, and membrane fluidity were evaluated in the blood cells by flow cytometry. The mRNA expression of the antioxidant-related genes sod2, cat, gstα, atp1a1, gclc, and ucp1 across the brain, liver, and gills was quantified. The acute exposure of annual killifish to Roundup significantly increased ROS production, lipid peroxidation, and DNA damage in their erythrocytes. Likewise, Roundup Transorb® decreased membrane fluidity in the blood cells of the exposed fish. Gene expression analysis revealed that Roundup exposure alters the relative expression of genes associated with oxidative stress and antioxidant defense. Our results give rise to new insights into adaptive mechanisms of A. charrua in response to Roundup. Since Brazilian annual killifishes strongly risk extinction, this study paves the way for developing novel biotechnologies applied to environmental monitoring and aquatic toxicology assessment.


Subject(s)
Glyphosate , Herbicides , Animals , Antioxidants/metabolism , Glycine/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress , Herbicides/toxicity , Fishes/metabolism , Fundulus heteroclitus , Biomarkers/metabolism
7.
Acta Trop ; 249: 107068, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951328

ABSTRACT

Among the parasites, some groups that have a limited capacity for locomotion, such as mites and lice, the transmission is challenging to win. These ectoparasites disperse through direct contact between hosts or, in some cases, through phoresy. However, these processes are not well-documented in detail because they are difficult to observe and quantify. In the present study, the patterns of distribution of skin mites and phoretic lice on hippoboscid louse fly Pseudolynchia canariensis sampled from Columba livia were evaluated. The analyzed pigeons were juveniles and adults, with three distinct plumage colors: blue checker, spread, or wild type, and were caught over 24 months. A total of 1,381 hippoboscid flies were collected on 377 hosts. The plumage color did not influence the infestation patterns of louse flies on juvenile and adult pigeons, nor did it influence the infestation patterns of skin mites and phoretic lice on the hippoboscid flies. However, the environmental temperature was directly related to higher prevalence, mean infestation intensity, and phoretic species richness on P. canariensis during the hottest seasons. Furthermore, a higher abundance of phoretic mite eggs, including embryonated eggs, was observed in females of P. canariensis in all seasons.


Subject(s)
Anoplura , Bird Diseases , Columbidae , Diptera , Ectoparasitic Infestations , Mites , Animals , Female , Age Factors , Bird Diseases/parasitology , Columbidae/parasitology , Diptera/parasitology , Feathers/parasitology , Pigmentation , Seasons , Sex Factors , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Male
8.
Fish Physiol Biochem ; 49(3): 409-423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37074474

ABSTRACT

The Nile tilapia (Oreochromis niloticus) is one of the most important cultured fish worldwide, but tilapia culture is largely affected by low temperatures. Recent studies suggest that microRNAs (miRNAs) regulate cold tolerance traits in fish. In general, qPCR-based methods are the simplest and most accurate forms of miRNA quantification. However, qPCR data heavily depends on appropriate normalization. Therefore, the aim of the present study is to determine whether the expression of previously tested, stably expressed miRNAs are affected by acute cold stress in Nile tilapia. For this purpose, one small nuclear RNA (U6) and six candidate reference miRNAs (miR-23a, miR-25-3, Let-7a, miR-103, miR-99-5, and miR-455) were evaluated in four tissues (blood, brain, liver, and gills) under two experimental conditions (acute cold stress and control) in O. niloticus. The stability of the expression of each candidate reference miRNA was analyzed by four independent methods (the delta Ct method, geNorm, NormFinder, and BestKeeper). Further, consensual comprehensive ranking of stability was built with RefFinder. Overall, miR-103 was the most stable reference miRNA in this study, and miR-103 and Let-7a were the best combination of reference targets. Equally important, Let-7a, miR-23a, and miR-25-3 remained consistently stable across different tissues and experimental groups. Considering all variables, U6, miR-99-5, and miR-455 were the least stable candidates under acute cold stress. Most important, suitable reference miRNAs were validated in O. niloticus, facilitating further accurate miRNA quantification in this species.


Subject(s)
Cichlids , MicroRNAs , Tilapia , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cichlids/genetics , Cichlids/metabolism , Cold-Shock Response , Real-Time Polymerase Chain Reaction/veterinary , Tilapia/metabolism , Gene Expression Profiling , Reference Standards
9.
Curr Microbiol ; 80(5): 136, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36914801

ABSTRACT

It is known that probiotic microorganisms play important roles in the composition of the intestinal microbiota. Also, probiotics can affect the paracellular and transcellular transport mechanisms performed by intestinal cells. The aim of this work was to evaluate the effect of the potential probiotic Bacillus subtilis KM0 on the profile of the gut microbiota and transcription of genes related to intestinal transport of zebrafish (Danio rerio). Zebrafish was exposed by immersion to B. subtilis KM0 for 48 h, and the intestines were collected for metataxonomic analysis and transcription of genes related to transcellular and paracellular transports. Although exposure to B. subtilis changed the intestinal microbiota profile of zebrafish, the diversity indices were not altered. A decrease in the number of genera of potentially pathogenic bacteria (Flavobacterium, Plesiomonas, and Pseudomonas) and downregulation in transcription of transcellular transport genes (cubn and amn) were observed. B. subtilis KM0 strain had the expected probiotic effect, by interfering with the proliferation of potentially pathogenic bacteria and decreasing the transcription of genes codifying for signals involved with a mechanism that can be used for invasion by pathogens. The present study demonstrated that, even with a short-term exposure, a bacterium with probiotic potential such as the KM0 strain of B. subtilis can modify the profile of the host's intestinal microbiota, with an impact on the regulation of intestinal genes related to mechanisms that can be used for invasion by pathogenic bacteria.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Bacillus subtilis/genetics , Zebrafish/microbiology , Intestines/microbiology
10.
Pharmaceutics ; 14(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36559219

ABSTRACT

Achyrocline satureioides (Lam.) DC extract-loaded nanoemulsions have demonstrated potential for wound healing, with promising effects on keratinocyte proliferation. We carried out the first in vivo investigation of the wound healing activity of a hydrogel containing A. satureioides extract-loaded nanoemulsions. We prepared hydrogels by adding the gelling agent (Carbopol® Ultrez) to extract-loaded nanoemulsions (~250 nm in diameter) obtained by spontaneous emulsification. The final flavonoid content in formulation was close to 1 mg/mL, as estimated by ultra-fast liquid chromatography. Permeation/retention studies using porcine ear skin showed that flavonoids reached deeper layers of pig ear skin when it was damaged (up to 3.2 µg/cm² in the dermis), but did not reach the Franz-type diffusion cell receptor fluid. For healing activity, we performed a dorsal wound model using Wistar rats, evaluating the lesion size, anti-inflammatory markers, oxidative damage, and histology. We found that extract-loaded formulations promoted wound healing by increasing angiogenesis by ~20%, reducing inflammation (tumor necrosis factor α) by ~35%, decreasing lipid damage, and improving the re-epithelialization process in lesions. In addition, there was an increase in the number of blood vessels and hair follicles for wounds treated with the formulation compared with the controls. Our findings indicate that the proposed formulation could be promising in the search for better quality healing and tissue reconstruction.

11.
Front Genet ; 13: 903201, 2022.
Article in English | MEDLINE | ID: mdl-36159973

ABSTRACT

Silverside fish inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. Although silversides are not fully adapted to freshwater, they can tolerate a wide range of salinity variations. MicroRNAs (miRNAs) are a class of ∼22 nucleotide noncoding RNAs, which are crucial regulators of gene expression at post-transcriptional level. Current data indicate that miRNAs biogenesis is altered by situations of environmental stress, thereby altering the expression of target mRNAs. Foremost, the silversides were acutely exposed to 30 g.L-1 of salt to reveal in which tissue miR-429 could be differentially expressed. Thus, fish were acclimated to freshwater (0 g.L-1) and to brackish water (10 g.L-1), and then exposed to opposite salinity treatment. Here, we reveal that miR-429, a gill-enriched miRNA, emerges as a prime osmoregulator in silversides. Taken together, our findings suggest that miR-429 is an endogenous regulator of osmotic stress, which may be developed as a biomarker to assist silverside aquaculture.

12.
Front Genet ; 13: 948228, 2022.
Article in English | MEDLINE | ID: mdl-36160013

ABSTRACT

Variations in water salinity and other extrinsic factors have been shown to induce changes in feeding rhythms and growth in fish. However, it is unknown whether appetite-related hormones mediate these changes in Nile tilapia (Oreochromis niloticus), an important species for aquaculture in several countries. This study aimed to evaluate the expression of genes responsible for appetite regulation and genes related to metabolic and physiological changes in tilapia exposed to different salinities. Moreover, the study proposed to sequence and to characterize the cart, cck, and pyy genes, and to quantify their expression in the brain and intestine of the fish by quantitative polymerase chain reaction (qPCR). The animals were exposed to three salinities: 0, 6, and 12 parts per thousand (ppt) of salt for 21 days. Furthermore, lipid peroxidation, reactive oxygen species, DNA damage, and membrane fluidity in blood cells were quantified by flow cytometry. The results indicated an increased expression of cart, pyy, and cck and a decreased expression of npy in the brain, and the same with cck and npy in the intestine of fish treated with 12 ppt. This modulation and other adaptive responses may have contributed to the decrease in weight gain, specific growth rate, and final weight. In addition, we showed oxidative damage in blood cells resulting from increasing salinity. These results provide essential data on O. niloticus when exposed to high salinities that have never been described before and generate knowledge necessary for developing biotechnologies that may help improve the production of economically important farmed fish.

13.
Fish Shellfish Immunol ; 128: 269-278, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35952998

ABSTRACT

Nile tilapia is the fourth most produced species in the global aquiculture panorama. This species requires water temperatures higher than 16 °C to grow and survive, and so, little is known about the effects of low temperatures on genes related to food intake and inflammatory responses. This study brought insights about the modulation of genes in different tissues of Nile tilapia chronically exposed to low temperatures. Thus, sixty animals were divided in two experimental groups: a control group in which the animals remained at the optimum temperature of 24 °C; and an exposed to cold group, in which a decrease in the water temperature was applied until reaching 15 °C. These conditions were maintained for 28 days. Blood samples were collected for flow cytometry analysis, while brain, spleen, liver, and kidney tissues were collected for total RNA extraction, followed by quantitative PCR (RT-qPCR). For genes related to feeding process pathway, it was observed an upregulation in pyy and a downregulation of npy and cart gene expression. Also, pro-inflammatory cytokine genes were modulated in the spleen, kidney and liver with a higher expression of il-1b and tnfα and a reduction in the il-8 and nf-κß gene expressions in the group exposed to 15 °C. The fish exposed to cold presented higher serum cortisol levels than the ones from control group. The blood cell analysis showed a lower level of membrane fluidity and a higher DNA fragmentation and cell disruption in the group exposed to cold. These findings suggest an important effect of a stressful situation in the tilapia organism due to cold exposure. This study brings insights on tilapia wellbeing under low temperature stress. It can be a first step to understanding the appropriate way to cope with cold impacts on aquaculture.


Subject(s)
Cichlids , Tilapia , Animals , Hydrocortisone , Interleukin-8 , RNA , Spleen , Tilapia/genetics , Tumor Necrosis Factor-alpha , Water
15.
Front Physiol ; 12: 723853, 2021.
Article in English | MEDLINE | ID: mdl-34539447

ABSTRACT

The excess of circulating growth hormone (GH) in most transgenic animals implies mandatory growth resulting in higher metabolic demand. Considering that the intestine is the main organ responsible for the digestion, absorption, and direction of dietary nutrients to other tissues, this study aimed to investigate the mechanisms by which gh overexpression modulates the intestine to support higher growth. For this purpose, we designed an 8-weeks feeding trial to evaluate growth parameters, feed intake, and intestinal morphometric indices in the adult gh-transgenic zebrafish (Danio rerio) model. To access the sensitivity of the intestine to the excess of circulating GH, the messenger RNA (mRNA) expression of intestine GH receptors (GHRs) (ghra and ghrb) was analyzed. In addition, the expression of insulin-like growth factor 1a (igf1a) and genes encoding for di and tripeptide transporters (pept1a and pept1b) were assessed. Gh-transgenic zebrafish had better growth performance and higher feed intake compared to non-transgenic sibling controls. Chronic excess of GH upregulates the expression of its cognate receptor (ghrb) and the main growth factor related to trophic effects in the intestine (igf1a). Moreover, transgenic zebrafish showed an increased intestinal absorptive area and higher expression of crucial genes related to the absorption of products from meal protein degradation. These results reinforce the ability of GH to modulate intestinal morphology and the mechanisms of assimilation of nutrients to sustain the energy demand for the continuous growth induced by the excess of circulating GH.

16.
Front Genet ; 12: 704778, 2021.
Article in English | MEDLINE | ID: mdl-34567067

ABSTRACT

Overexpression of growth hormone (GH) in gh-transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males. It is hypothesized that microRNAs are directly involved in the regulation of fertility potential during spermatogenesis. The primary aim of our study was to verify whether gh overexpression disturbs the sperm miRNA profile and influences the sperm quality in transgenic zebrafish. We report a significant increase in body weight of gh-transgenic males along with associated reduced sperm motility and other kinetic parameters in comparison to the non-transgenic group. MicroRNA transcriptome sequencing of gh-transgenic zebrafish sperms revealed expressions of 186 miRNAs, among which six miRNA were up-regulated (miR-146b, miR-200a-5p, miR-146a, miR-726, miR-184, and miR-738) and sixteen were down-regulated (miR-19d-3p, miR-126a-5p, miR-126b-5p, miR-22a-5p, miR-16c-5p, miR-20a-5p, miR-126b-3p, miR-107a-3p, miR-93, miR-2189, miR-202-5p, miR-221-3p, miR-125a, miR-125b-5p, miR-126a-3p, and miR-30c-5p) in comparison to non-transgenic zebrafish. Some of the dysregulated miRNAs were previously reported to be related to abnormalities in sperm quality and reduced reproduction ability in other species. In this study, an average of 134 differentially expressed miRNAs-targeted genes were predicted using the in silico approach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the genes of affected pathways were primarily related to spermatogenesis, sperm motility, and cell apoptosis. Our results suggested that excess GH caused a detrimental effect on sperm microRNAome, consequently reducing the sperm quality and reproductive potential of zebrafish males.

17.
Environ Sci Pollut Res Int ; 28(46): 65127-65139, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34228309

ABSTRACT

Roundup Transorb® (RDT) is a glyphosate-based herbicide commonly used in agricultural practices worldwide. This herbicide exerts negative effects on the aquatic ecosystem and affects bioenergetic and detoxification pathways, oxidative stress, and cell damage in marine organisms. These effects might also occur at the transcriptional level; however, the expression of genes associated with oxidative stress has not been studied well. Odontesthes humensis is a native Brazilian aquatic species naturally distributed in the habitats affected by pesticides, including Roundup Transorb® (RDT). This study evaluated the toxic effects of short-term exposure to RDT on O. humensis. Moreover, the genes related to oxidative stress were sequenced and characterized, and their expressions in the gills, hepatopancreas, kidneys, and brain of the fish were quantified by quantitative reverse transcription-polymerase chain reaction. The animals were exposed to two environmentally relevant concentrations of RDT (2.07 and 3.68 mg L-1) for 24 h. Lipid peroxidation, reactive oxygen species (ROS), DNA damage, and apoptosis in erythrocytes were quantified by flow cytometry. The expression of the target genes was modulated in most tissues in the presence of the highest tested concentration of RDT. In erythrocytes, the levels of lipid peroxidation, ROS, and DNA damage were increased in the presence of both the concentrations of RDT, whereas cell apoptosis was increased in the group exposed to 3.68 mg L-1 RDT. In conclusion, acute exposure to RDT caused oxidative stress in the fish, induced negative effects on cells, and modulated the expression of genes related to the enzymatic antioxidant system in O. humensis.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Ecosystem , Fishes , Herbicides/toxicity , Lipid Peroxidation , Liver , Oxidative Stress , Water Pollutants, Chemical/toxicity
18.
Zebrafish ; 18(2): 139-148, 2021 04.
Article in English | MEDLINE | ID: mdl-33656385

ABSTRACT

Many scientific studies still use zebrafish from pet stores as animal models, even cutting-edge researches. However, these animals differ genotypically and phenotypically between them. The importance of the use of standardized models is widely recognized. Besides that, another consequence of using zebrafish from unknown origins is the acquisition of parasitized animals. This study aimed to relate the infection by Clinostomum sp. in zebrafish. Animals sold as "high standard" were acquired from a commercial company. Swimming alterations and superficial yellow dots were observed in five zebrafish with clinical signs, which were isolated, euthanized, and necropsied. Muscular yellow cysts with metacercaria associated with lesions were observed. The muscular cysts were responsible for the superficial yellow dots as well as the swimming alterations. The prevalence was 2.5%, and the mean infection intensity was 7 digeneans/host. The cysts measured a mean of 1251.43 µm long × 784.28 µm wide. Metacercariae measured a mean of 4847 µm long × 1353 µm wide. This first report about infection by Clinostomum sp. in zebrafish is globally relevant since the host and the parasite genus currently overlap worldwide. Furthermore, this study sheds light on the importance of the specific pathogen-free commercial creations or laboratory-reared zebrafish for research.


Subject(s)
Fish Diseases , Trematoda , Trematode Infections , Zebrafish/parasitology , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Metacercariae , Trematode Infections/epidemiology
19.
Colloids Surf B Biointerfaces ; 196: 111301, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32871442

ABSTRACT

Soybean isoflavone aglycones have been investigated as potential wound healing compounds for topical application. The aim of this study was to evaluate the wound healing properties of a soybean isoflavone aglycones-rich fraction (IAF) when incorporated into lipid nanoemulsions dispersed in acrylic-acid hydrogels. Formulations exhibited a mean droplet size in the sub 200 nm range, negative ζ-potential (-60 mV), and displayed non-Newtonian pseudoplastic behavior. The addition of a gelling agent decreased the IAF release from formulations and improved the retention of these compounds in intact porcine ear skin when compared with a control propylene glycol solution. No IAF were detected in receptor fluid of Franz-type diffusion cells. However, increasing amounts of IAF were noticed in both skin layers and the receptor fluid when the tissue was partially injured (tape stripping), or when the epidermis was completely removed. In vitro studies showed that IAF elicits an increased proliferation and migration of keratinocytes (HaCaT cell line). Subsequently, the healing effect of the formulations was evaluated in a model of dorsal wounds in rats, by assessing the size of the lesions, histology, inflammatory markers, and antioxidant activity. Overall findings demonstrated the potential of IAF-loaded formulations to promote wound healing by increasing angiogenesis by ∼200 %, reducing the lipid oxidation (TBARS) by ∼52 % and the inflammation (TNFα) by ∼35 %, while increasing re-epithelialization by ∼500 %, visualized by the epithelium thickness.


Subject(s)
Hydrogels , Isoflavones , Animals , Isoflavones/pharmacology , Rats , Skin , Glycine max , Swine , Wound Healing
20.
Sci Rep ; 10(1): 12692, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728128

ABSTRACT

Reference genes (RGs) must have a stable expression in tissues in all experimental conditions to normalize real-time quantitative reverse transcription PCR (qRT-PCR) data. F0104 is a highly studied lineage of zebrafish developed to overexpress the growth hormone (GH). It is assumed that the transgenic process may influence the expression levels of commonly used RGs. The objective of the present study was to make a comprehensive analysis of stability of canditade RGs actb1, actb2, b2m, eif2s2, eef1a1, gapdh, rplp2, rpl7, rpl13α, tuba1, and rps18, in gh-transgenic and non-transgenic zebrafish. Liver, brain, intestine and muscle samples from both groups had qRT-PCR results analyzed by dCt, geNorm, NormFinder, BestKeeper, and RefFinder softwares. Consensus analyses among software concluded that rpl13α, rpl7, and eef1a1 are the most stable genes for zebrafish, considering the studied groups and tissues. Gapdh, rps18, and tuba1 suffered variations in stability among different tissues of both groups, and so, they were listed as the genes with lowest stability. Results from an average pairwise variations test indicated that the use of two RGs would generate reliable results for gene expression analysis in the studied tissues. We conclude that genes that are commonly used in mammals for qRT-PCR assays have low stability in both non-transgenic and gh-transgenic zebrafish reinforcing the importance of using species-specific RGs.


Subject(s)
Growth Hormone/genetics , Real-Time Polymerase Chain Reaction/standards , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Brain Chemistry , Intestines/chemistry , Liver/chemistry , Muscle, Skeletal/chemistry , Real-Time Polymerase Chain Reaction/veterinary , Reference Standards , Software
SELECTION OF CITATIONS
SEARCH DETAIL