Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 93: 103618, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912576

ABSTRACT

A dynamic model to predict the germination and outgrowth of Clostridium botulinum spores in cooked ground beef was presented. Raw ground beef was inoculated with a ten-strain C. botulinum spore cocktail to achieve approximately 2 log spores/g. The inoculated ground beef was vacuum packaged, cooked to 71 °C to heat shock the spores, cooled to below 10 °C, and incubated isothermally at temperatures from 10 to 46 °C. C. botulinum growth was quantified and fitted into the primary Baranyi Model. Secondary models were fitted to maximum specific growth rate and lag phase duration using Modified Ratkowsky equation (R2 0.96) and hyperbolic function (R2 0.94), respectively. Similar experiments were also performed under non-isothermal (cooling) conditions. Acceptable zone prediction (APZ) analysis was conducted on growth data collected over 3 linear cooling regimes from the current study. The model performance (prediction errors) for all 22 validation data points collected in the current work were within the APZ limits (-1.0 to +0.5 log CFU/g). Additionally, two other growth data sets of C. botulinum reported in the literature were also subjected to the APZ analysis. In these validations, 20/22 and 10/14 predictions fell within the APZ limits. The model presented in this work can be employed to predict C. botulinum spore germination and growth in cooked uncured beef under non-isothermal conditions. The beef industry processors and food service organizations can utilize this predictive microbial model for cooling deviations and temperature abused situations and in developing customized process schedules for cooked, uncured beef products.


Subject(s)
Clostridium botulinum/growth & development , Cold Temperature , Cooking , Food Microbiology , Red Meat/microbiology , Animals , Cattle , Food Packaging , Food Safety , Foodborne Diseases/microbiology , Meat Products/microbiology , Models, Biological , Spores, Bacterial/growth & development , Temperature , Vacuum
2.
J Food Prot ; 83(9): 1598-1606, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32324844

ABSTRACT

ABSTRACT: Ready-to-eat (RTE) meat and poultry product samples collected between 2005 and 2017 from RTE-producing establishments for the U.S. Department of Agriculture, Food Safety and Inspection Service (FSIS) ALLRTE/RTEPROD_RAND (random) and RTE001/RTEPROD_RISK (risk-based) sampling projects were tested for Listeria monocytogenes (Lm). Data for 45,897 ALLRTE/RTEPROD_RAND samples collected from 3,607 distinct establishments and 112,347 RTE001/RTEPROD_RISK samples collected from 3,283 distinct establishments were analyzed for the presence of Lm. These data were also analyzed based upon the percentages of establishments with positive samples, annual production volume, sanitation control alternatives, geographic location, and season or month of sample collection. Results revealed low occurrence of Lm-positive samples from the random and risk-based sampling projects, with 152 (0.33%) positive samples for ALLRTE/RTEPROD_RAND and 403 (0.36%) positive samples for RTE001/RTEPROD_RISK. The percentage of positive samples significantly decreased over time, from about 0.7% in 2005 and 2006 to about 0.2% in 2017 (P < 0.05). From 2005 to 2017, 3.9% of establishments sampled under the ALLRTE/RTEPROD_RAND sampling project had at least one Lm-positive sample. Similarly, 10.0% of establishments sampled under the RTE001/RTEPROD_RISK sampling project had at least one positive sample. Samples positive for Lm were found in all geographic regions in all months. Thus, in 13 years of RTE product sampling in FSIS-regulated establishments (2005 through 2017), <0.4% of samples were positive for Lm in both risk-based and random sampling projects. The low prevalence of Lm in these products suggests that the combination of FSIS policies and industry practices may be effective for controlling Lm contamination. Information obtained from these sampling projects is relevant to the ongoing prevention of foodborne Lm illnesses from RTE meat and poultry products.


Subject(s)
Listeria monocytogenes , Meat Products , Agriculture , Consumer Product Safety , Food Contamination/analysis , Food Microbiology , Meat , Poultry Products , United States
3.
Int J Food Microbiol ; 290: 49-58, 2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30296636

ABSTRACT

Bacillus cereus is frequently implicated in foodborne outbreaks associated with the consumption of cooked rice. The main contributing factors leading to outbreaks is rice cooked in large quantities and subsequently, inadequately chilled or stored at room temperatures for a prolonged period of time prior to consumption. Bacillus cereus growth in cooked rice inoculated with approximately 2 log CFU/g of heat-shocked (80 °C/10 min) spores at several isothermal conditions (between 10 and 49 °C) was quantified. B. cereus populations were determined by plating on mannitol egg yolk polymyxin agar and incubating at 30 °C for 24 h. Primary growth models, namely Baranyi, Huang, modified Gompertz, and logistic models were fitted to growth data. Specific growth rates from all four primary models were used to fit the modified Ratkowsky square-root model with respect to temperature. All four primary models were well fitted by the modified Ratkowsky model (R2 values from 0.90-0.99). Based on the goodness of fit secondary model statistics (R2, SSE, RMSE), the Baranyi model performed the best and was chosen for tertiary modeling. Acceptable prediction zone (APZ) analysis was performed for validation of the Baranyi model predictions during single rate exponential and biphasic linear cooling temperature profiles. For single rate cooling, 23 of the 24 predictions fell within the APZ (-1.0 to 0.5 log CFU/g). For biphasic linear cooling, 26 of the 28 predictions fell within the APZ. The developed dynamic model can be used to predict potential B. cereus growth from spores in cooked rice during chilling and thus, support the disposition of product subject to cooling deviations.


Subject(s)
Bacillus cereus/growth & development , Cold Temperature , Food Microbiology , Models, Biological , Oryza/microbiology , Colony Count, Microbial , Cooking
4.
J Food Prot ; 81(3): 430-436, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29474146

ABSTRACT

The objective of this study was to assess the ability of Bacillus cereus spores to germinate and grow in order to determine a safe cooling rate for cooked rice, beans, and pasta, rice-chicken (4:1), rice-chicken-vegetables (3:1:1), rice-beef (4:1), and rice-beef-vegetables (3:1:1). Samples were inoculated with a cocktail of four strains of heat-shocked (80°C for 10 min) B. cereus spores (NCTC 11143, 935A/74, Brad 1, and Mac 1) to obtain a final spore concentration of approximately 2 log CFU/g. Thereafter, samples were exponentially cooled through the temperature range of 54.5 to 7.2°C in 6, 9, 12, 15, 18, and 21 h. At the end of the cooling period, samples were removed and plated on mannitol egg yolk polymyxin agar. The plates were incubated at 30°C for 24 h. The net B. cereus growth from spores in beans was <1 log after 9 h of cooling, but the pathogen grew faster in rice and pasta. In combination products, the net growth was as follows: 3.05, 3.89, and 4.91 log CFU/g in rice-chicken; 3.49, 4.28, and 4.96 log CFU/g in rice-beef; 3.50, 4.20, and 5.32 CFU/g in rice-chicken-mixed vegetables; and 3.68, 4.44, and 5.25 CFU/g in rice-beef-mixed vegetables after 15, 18, and 21 h of cooling, respectively. This study suggests safe cooling rates for cooling cooked rice, beans, pasta, rice-chicken, rice-chicken-vegetables, rice-beef, and rice-beef-vegetables to guard against the hazards associated with B. cereus.

5.
J Health Commun ; 19(9): 1017-29, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24555542

ABSTRACT

Obesity is linked to numerous diseases including heart disease, diabetes, and cancer. To address this issue, food and beverage manufacturers as well as health organizations have developed nutrition symbols and logos to be placed on the front of food packages to guide consumers to more healthful food choices. In 2010, the U.S. Food and Drug Administration requested information on the extent to which consumers notice, use, and understand front-of-package nutrition symbols. In response, this study used eye-tracking technology to explore the degree to which people pay visual attention to the information contained in food nutrition labels and front-of-package nutrition symbols. Results indicate that people with motivation to shop for healthful foods spent significantly more time looking at all available nutrition information compared to people with motivation to shop for products on the basis of taste. Implications of these results for message design, food labeling, and public policy are discussed.


Subject(s)
Attention , Diet/psychology , Food Labeling , Health Literacy , Motivation , Adolescent , Choice Behavior , Eye Movements , Female , Humans , Male , Models, Psychological , Nutrition Policy , Symbolism , United States , Young Adult
6.
Int J Food Microbiol ; 157(2): 267-77, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22704063

ABSTRACT

Listeria monocytogenes is readily found in the environment of retail deli establishments and can occasionally contaminate food handled in these establishments. Here we synthesize the available scientific evidence to derive probability distributions and mathematical models of bacterial transfers between environmental surfaces and foods, including those during slicing of food, and of bacterial removal during cleaning and sanitizing (models available at www.foodrisk.org). Transfer coefficients varied considerably by surface type, and after log(10) transformation were best described by normal distributions with means ranging from -0.29 to -4.96 and standard deviations that ranged from 0.07 to 1.39. 'Transfer coefficients' during slicing were best described by a truncated logistic distribution with location 0.07 and scale 0.03. In the absence of protein residues, mean log inactivation indicated a greater than 5 log(10) reduction for sanitization with hypochlorite (mean: 6.5 log(10); 95% confidence interval (CI): 5.0-8.1 log(10)) and quaternary ammonium compounds (mean: 5.5 log(10); 95% CI: 3.6-7.3 log(10)), but in the presence of protein residues efficacy reduced dramatically for hypochlorite (mean: 3.8 log(10); 95% CI: 2.1-5.4 log(10)) as well as quaternary ammonium compounds (mean: 4.4log(10); 95% CI: 2.5-6.4 log(10)). Overall, transfer coefficients are therefore low, even though cross-contamination can be extremely efficient under certain conditions. Dozens of food items may consequently be contaminated from a single contaminated slicer blade, albeit at low concentrations. Correctly performed sanitizing efficiently reduces L. monocytogenes contamination in the environment and therefore limits cross-contamination, even though sanitization is only performed a few times per day. However, under unfavorable conditions reductions in bacterial concentration may be far below 5 log(10). The probability distributions and mathematical models derived here can be used to evaluate L. monocytogenes cross-contamination dynamics in environments where foods are handled, and to assess the potential impact of different intervention strategies.


Subject(s)
Listeria monocytogenes , Models, Theoretical , Colony Count, Microbial , Consumer Product Safety , Disinfection , Food Contamination , Food Microbiology , Listeria monocytogenes/growth & development , Listeria monocytogenes/isolation & purification , Meat/microbiology , Sanitation
SELECTION OF CITATIONS
SEARCH DETAIL
...