Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 45(10): 7721-7733, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37886931

ABSTRACT

This study addresses the propagation challenges faced by 'Shine Muscat', a newly introduced premium grapevine cultivar in South Korea, where multiple viral infections pose considerable economic loss. The primary objective was to establish a robust in vitro propagation method for producing disease-free grapes and to identify effective plant growth regulators to facilitate large-scale mass cultivation. After experimentation, 2.0 µM 6-benzyladenine (BA) exhibited superior shoot formation in the Murashige and Skoog medium compared with kinetin and thidiazuron. Conversely, α-naphthaleneacetic acid (NAA) hindered shoot growth and induced callus formation, while indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) demonstrated favorable root formation, with IBA showing better results overall. Furthermore, inter simple sequence repeat analysis confirmed the genetic stability of in vitro-cultivated seedlings using 2.0 µM BA and 1.0 µM IBA, validating the suitability of the developed propagation method for generating disease-free 'Shine Muscat' grapes. These findings offer promising prospects for commercial grape cultivation, ensuring a consistent supply of healthy grapes in the market.

2.
Brain Stimul ; 16(5): 1377-1383, 2023.
Article in English | MEDLINE | ID: mdl-37716638

ABSTRACT

BACKGROUND: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 µA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 µA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 µA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.


Subject(s)
Deep Brain Stimulation , Dopamine , Neostriatum , Electric Stimulation , Brain
3.
J Periodontal Implant Sci ; 52(4): 325-337, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36047585

ABSTRACT

PURPOSE: The aim of this study was to investigate the effect of (1) the size of the bony access window and (2) collagen membrane coverage over the window in sinus floor elevation in a rabbit sinus model. METHODS: Small bony access windows (SW; ø 2.8 mm) were made in 6 rabbits and large windows (LW; ø 6 mm) in 6 other rabbits. Both sinuses in each rabbit were allocated to groups with or without coverage of a collagen membrane (CM) on the window, resulting in 4 groups: SW, LW, SW+CM, and LW+CM. After 4 weeks of healing, micro-computed tomographic, histologic, and histomorphometric analyses were performed. RESULTS: Bony healing in the window area was incomplete in all groups, but most bone graft particles were well confined in the augmented cavity. Histologically, the pattern of new bone formation was similar in all groups. Histomorphometrically, the percentage of newly formed bone was greater in the groups with CM than in the groups without CM, and in the groups with SW than in the groups with LW (12.92%±6.40% in the SW+CM group, 4.21%±7.73% in the SW group, 10.45%±4.81% in the LW+CM group, 11.77%±3.83% in the LW group). The above differences were not statistically significant (P>0.05). CONCLUSIONS: The combination of a small bony access window and the use of a collagen membrane over the window favored new bone formation compared to other groups, but this result should be further investigated due to the limitations of the present animal model.

4.
Anal Chem ; 93(48): 15861-15869, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34839667

ABSTRACT

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.


Subject(s)
Dielectric Spectroscopy , Electrochemical Techniques , Animals , Electrodes , Feasibility Studies , Fourier Analysis , Neurotransmitter Agents , Rats , Rats, Sprague-Dawley
5.
Sensors (Basel) ; 21(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34695942

ABSTRACT

Numerous brain-machine interface (BMI) studies have shown that various frequency bands (alpha, beta, and gamma bands) can be utilized in BMI experiments and modulated as neural information for machine control after several BMI learning trial sessions. In addition to frequency range as a neural feature, various areas of the brain, such as the motor cortex or parietal cortex, have been selected as BMI target brain regions. However, although the selection of target frequency and brain region appears to be crucial in obtaining optimal BMI performance, the direct comparison of BMI learning performance as it relates to various brain regions and frequency bands has not been examined in detail. In this study, ECoG-based BMI learning performances were compared using alpha, beta, and gamma bands, respectively, in a single rodent model. Brain area dependence of learning performance was also evaluated in the frontal cortex, the motor cortex, and the parietal cortex. The findings indicated that BMI learning performance was best in the case of the gamma frequency band and worst in the alpha band (one-way ANOVA, F = 4.41, p < 0.05). In brain area dependence experiments, better BMI learning performance appears to be shown in the primary motor cortex (one-way ANOVA, F = 4.36, p < 0.05). In the frontal cortex, two out of four animals failed to learn the feeding tube control even after a maximum of 10 sessions. In conclusion, the findings reported in this study suggest that the selection of target frequency and brain region should be carefully considered when planning BMI protocols and for performing optimized BMI.


Subject(s)
Brain-Computer Interfaces , Motor Cortex , Animals , Brain , Electrocorticography , Electroencephalography
6.
Exp Mol Med ; 53(7): 1148-1158, 2021 07.
Article in English | MEDLINE | ID: mdl-34244591

ABSTRACT

Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRABDA2m, we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels.


Subject(s)
Dopamine/metabolism , Monoamine Oxidase/metabolism , gamma-Aminobutyric Acid/biosynthesis , Animals , Clorgyline/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Female , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Monoamine Oxidase/analysis , Monoamine Oxidase Inhibitors/pharmacology , Patch-Clamp Techniques , Rats, Sprague-Dawley , Selegiline/pharmacology , gamma-Aminobutyric Acid/metabolism
7.
Anal Chem ; 90(22): 13348-13355, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30358389

ABSTRACT

Although fast-scan cyclic voltammetry (FSCV) has been widely used for in vivo neurochemical detection, the sensitivity and selectivity of the technique can be further improved. In this study, we develop fast cyclic square-wave voltammetry (FCSWV) as a novel voltammetric technique that combines large-amplitude cyclic square-wave voltammetry (CSWV) with background subtraction. A large-amplitude, square-shaped potential was applied to induce cycling through multiple redox reactions within a square pulse to increase sensitivity and selectivity when combined with a two-dimensional voltammogram. As a result, FCSWV was significantly more sensitive than FSCV ( n = 5 electrodes, two-way ANOVA, p = 0.0002). In addition, FCSWV could differentiate dopamine from other catecholamines (e.g., epinephrine and norepinephrine) and serotonin better than conventional FSCV. With the confirmation that FCSWV did not influence local neuronal activity, despite the large amplitude of the square waveform, it could monitor electrically induced phasic changes in dopamine release in rat striatum before and after injecting nomifensine, a dopamine reuptake inhibitor.


Subject(s)
Electrochemical Techniques/methods , Neurotransmitter Agents/analysis , Animals , Corpus Striatum/metabolism , Dopamine/analysis , Epinephrine/analysis , Male , Mice , Norepinephrine/analysis , Rats, Sprague-Dawley , Sensitivity and Specificity , Serotonin/analysis
8.
Anal Chem ; 88(18): 8942-8, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27535464

ABSTRACT

In this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K(+)). The dual NO/K(+) sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 µm) and Ag (diameter, 76.2 µm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K(+) ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA µM(-1), n = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K(+) (51.6 ± 1.9 mV pK(-1), n = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 µm, n = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K(+) changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K(+) levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K(+) sensor's measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K(+) dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K(+) in vivo.


Subject(s)
Electrochemical Techniques/instrumentation , Epilepsy/metabolism , Neocortex/pathology , Nitric Oxide/metabolism , Potassium/metabolism , Seizures/metabolism , Animals , Biosensing Techniques/instrumentation , Electrodes , Epilepsy/pathology , Epilepsy/physiopathology , Equipment Design , Male , Neocortex/metabolism , Neocortex/physiopathology , Nitric Oxide/analysis , Potassium/analysis , Rats , Rats, Sprague-Dawley , Seizures/pathology , Seizures/physiopathology
9.
Exp Neurobiol ; 25(3): 130-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27358581

ABSTRACT

Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia.

10.
Anal Chem ; 88(5): 2563-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26855261

ABSTRACT

This paper reports the fabrication of an insertable amperometric dual microsensor and its application for the simultaneous and fast sensing of NO and CO during acutely induced seizures of living rat brain cortex. NO and CO are important signaling mediators, controlling cerebrovascular tone. The dual NO/CO sensor is prepared based on a dual microelectrode having Au-deposited Pt microdisk (WE1, 76 µm diameter) and Pt black-deposited Pt disk (WE2, 50 µm diameter). The different deposited metals for WE1 and WE2 allow the selective anodic detection of CO at WE1 (+0.2 V vs Ag/AgCl) and that of NO at WE2 (+0.75 V vs Ag/AgCl) with sufficient sensitivity. Fluorinated xerogel coating on this dual electrode provides exclusive selectivity over common biological interferents, along with fast response time. The miniaturized size (end plane diameter < 300 µm) and tapered needle-like sensor geometry make the sensor become insertable into biological tissues. The sensor is applied to simultaneously monitor dynamic changes of NO and CO levels in a living rat brain under acute seizure condition induced by 4-aminopyridine in cortical tissue near the area of seizure induction. In-tissue measurement shows clearly defined patterns of NO/CO changes, directly correlated with observed LFP signal. Current study verifies the feasibility of a newly developed NO/CO dual sensor for real-time fast monitoring of intimately connected NO and CO dynamics.


Subject(s)
Biosensing Techniques/instrumentation , Carbon Monoxide/analysis , Cerebral Cortex/chemistry , Nitric Oxide/analysis , Seizures/metabolism , 4-Aminopyridine , Animals , Cerebral Cortex/blood supply , Rats , Rats, Sprague-Dawley , Seizures/chemically induced
11.
Analyst ; 140(10): 3415-21, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25751504

ABSTRACT

This study reports real-time, in vivo functional measurement of nitric oxide (NO) and carbon monoxide (CO), two gaseous mediators in controlling cerebral blood flow. A dual electrochemical NO/CO microsensor enables us to probe the complex relationship between NO and CO in regulating cerebrovascular tone. Utilizing this dual sensor, we monitor in vivo change of NO and CO simultaneously during direct epidural electrical stimulation of a living rat brain cortex. Both NO and CO respond quickly to meet physiological needs. The neural system instantaneously increases the released amounts of NO and CO to compensate the abrupt, yet transient hypoxia that results from epidural electrical stimulation. Intrinsic-signal optical imaging confirms that direct electrical stimulation elicits robust, dynamic changes in cerebral blood flow, which must accompany NO and CO signaling. The addition of l-arginine (a substrate for NO synthase, NOS) results in increased NO generation and decreased CO production compared to control stimulation. On the other hand, application of the NOS inhibitor, l-N(G)-nitroarginine methyl ester (l-NAME), results in decreased NO release but increased CO production of greater magnitude. This observation suggests that the interaction between NO and CO release is likely not linear and yet, they are tightly linked vasodilators.


Subject(s)
Carbon Monoxide/metabolism , Electric Stimulation , Electrochemistry/methods , Neocortex/metabolism , Nitric Oxide/metabolism , Animals , Arginine/metabolism , Arginine/pharmacology , Enzyme Inhibitors/pharmacology , Epidural Space , Male , NG-Nitroarginine Methyl Ester/pharmacology , Neocortex/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Optical Imaging , Rats , Rats, Sprague-Dawley , Time Factors
12.
Anal Sci ; 30(10): 985-90, 2014.
Article in English | MEDLINE | ID: mdl-25312629

ABSTRACT

Myocardial ischemia (MI) induces many changes in the body, including pH decrease and electrolyte imbalance. No obvious symptoms of MI appear until irreversible cellular injuries occur. Since early treatment is critical for recovery from ischemia, the development of reliable diagnostic tool is demanded to detect the early ischemic status. Ischemia modified albumin (IMA), formed by cleavage of the last two amino acids of the human serum albumin (HSA) N-terminus, has been considered so far as the most trustworthy and accurate marker for the investigation of ischemia. IMA levels are elevated in plasma within a few minutes of ischemic onset, and may last for up to 6 h. In the present study, we developed a novel assay for the examination of IMA levels to ameliorate the known albumin cobalt binding (ACB) test established previously. We observed a stronger copper ion bound to the HSA N-terminal peptide than cobalt ion by HPLC and ESI-TOF mass spectrometric analyses. The copper ion was employed with lucifer yellow (LY), a copper-specific reagent to develop a new albumin copper binding (ACuB) assay. The parameters capable of affecting the assay results were optimized, and the finally-optimized ACuB assay was validated. The result of the IMA level measurement in normal versus stroke rat serum suggests that the ACuB assay is likely to be a reliable and sensitive method for the detection of ischemic states.


Subject(s)
Chromatography, High Pressure Liquid/methods , Myocardial Ischemia/diagnosis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Biomarkers/blood , Cobalt , Copper , Fluorescent Dyes , Isoquinolines , Rats, Sprague-Dawley , Serum Albumin , Serum Albumin, Human
13.
Neurosci Lett ; 513(2): 187-92, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22387063

ABSTRACT

We characterized the unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rat, a well-known acute model of Parkinson's disease (PD), with [(18)F]-fluoro-2-deoxy-d-glucose (FDG) small-animal positron emission tomography (PET), which we compared with a drug-induced rotation behavioral test. In the 6-OHDA model, significant glucose hypometabolism was present in the primary motor cortex, substantia nigra, and pedunculopontine tegmental nucleus on the ipsilateral side. In contrast, neuronal activations were observed in the primary somatosensory cortex and ventral caudate-putamen area after lesioning. Correlation analysis revealed a significant relationship between the behavioral results and the degree of glucose metabolism impairment in the primary motor cortex, substantia nigra, and pedunculopontine tegmental nucleus. In addition, the pedunculopontine tegmental nucleus correlated significantly with the primary somatosensory cortex, the ventral caudate-putamen, the substantia nigra, and the primary motor cortex. Furthermore, the primary motor cortex also showed significant correlations with the substantia nigra. In conclusion, In vivo cerebral mapping of the 6-OHDA-lesioned rats using [(18)F]-FDG PET showed correspondence at the functional levels to the cortico-subcortical network impairment observed in PD patients.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/methods , Neurons/diagnostic imaging , Oxidopamine/toxicity , Parkinson Disease, Secondary/diagnostic imaging , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/metabolism , Male , Motor Activity/drug effects , Motor Activity/physiology , Neurons/metabolism , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Radionuclide Imaging , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...