Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36840106

ABSTRACT

Event DS rice producing protopanaxadiol (PPD) has been previously developed by inserting Panax ginseng dammarenediol-II synthase gene (PgDDS) and PPD synthase gene (CYP716A47). We performed a gas chromatography-mass spectrometry (GC-MS)-based metabolomics of the DS rice to identify metabolic alterations as the effects of genetic engineering by measuring the contents of 65 metabolites in seeds and 63 metabolites in leaves. Multivariate analysis and one-way analysis of variance between DS and non-genetically modified (GM) rice showed that DS rice accumulated fewer tocotrienols, tocopherols, and phytosterols than non-GM rice. These results may be due to competition for the same precursors because PPDs in DS rice are synthesized from the same precursors as those of phytosterols. In addition, multivariate analysis of metabolic data from rice leaves revealed that composition differed by growth stage rather than genetic modifications. Our results demonstrate the potential of metabolomics for identifying metabolic alterations in response to genetic modifications.

2.
Plants (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451798

ABSTRACT

Chelidonium majus L. is a perennial herbaceous plant that has various medicinal properties. However, the genomic information about its carotenoid biosynthesis pathway (CBP), xanthophyll biosynthesis pathway (XBP), and apocarotenoid biosynthesis pathway (ABP) genes were limited. Thus, the CBP, XBP, and ABP genes of C. majus were identified and analyzed. Among the 15 carotenoid pathway genes identified, 11 full and 4 partial open reading frames were determined. Phylogenetic analysis of these gene sequences showed higher similarity with higher plants. Through 3D structural analysis and multiple alignments, several distinct conserved motifs were identified, including dinucleotide binding motif, carotene binding motif, and aspartate or glutamate residues. Quantitative RT-PCR showed that CBP, XBP, and ABP genes were expressed in a tissue-specific manner; the highest expression levels were achieved in flowers, followed by those in leaves, roots, and stems. The HPLC analysis of the different organs showed the presence of eight different carotenoids. The highest total carotenoid content was found in leaves, followed by that in flowers, stems, and roots. This study provides information on the molecular mechanisms involved in CBP, XBP, and ABP genes, which might help optimize the carotenoid production in C. majus. The results could also be a basis of further studies on the molecular genetics and functional analysis of CBP, XBP, and ABP genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...