Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 621(7979): 620-626, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344598

ABSTRACT

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Subject(s)
Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cryoelectron Microscopy , Mitochondrial Precursor Protein Import Complex Proteins/chemistry , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/ultrastructure , Protein Transport , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/ultrastructure
2.
Curr Opin Struct Biol ; 79: 102531, 2023 04.
Article in English | MEDLINE | ID: mdl-36724561

ABSTRACT

P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.


Subject(s)
Adenosine Triphosphatases , Endoplasmic Reticulum , Humans , Adenosine Triphosphatases/chemistry , Substrate Specificity , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Protein Domains , Saccharomyces cerevisiae/metabolism
3.
Mol Cell ; 81(22): 4635-4649.e8, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34715013

ABSTRACT

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.


Subject(s)
Polyamines/chemistry , Proton-Translocating ATPases/chemistry , Animals , Biological Transport , Catalysis , Cryoelectron Microscopy , Cytosol/metabolism , Humans , Lipids/chemistry , Lysosomes/chemistry , Molecular Dynamics Simulation , Parkinson Disease/metabolism , Phosphorylation , Protein Conformation , Protein Domains , Saccharomyces cerevisiae/metabolism , Spodoptera
4.
Science ; 369(6511)2020 09 25.
Article in English | MEDLINE | ID: mdl-32973005

ABSTRACT

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Endoplasmic Reticulum/enzymology , Mitochondrial Membranes/enzymology , P-type ATPases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Cryoelectron Microscopy , HeLa Cells , Humans , P-type ATPases/genetics , Protein Conformation, alpha-Helical , Protein Domains , Saccharomyces cerevisiae/enzymology , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...