ABSTRACT
In this work, we focus on understanding the morphology and photocatalytic properties of CeO2 nanocrystals (NCs) synthesized via a microwave-assisted solvothermal method using acetone and ethanol as solvents. Wulff constructions reveal a complete map of available morphologies and a theoretical-experimental match with octahedral nanoparticles obtained through synthesis using ethanol as solvent. NCs synthesized in acetone show a greater contribution of emission peaks in the blue region (â¼450 nm), which may be associated with higher Ce3+ concentration, originating shallow-level defects within the CeO2 lattice while for the samples synthesized in ethanol a strong orange-red emission (â¼595 nm) suggests that oxygen vacancies may originate from deep-level defects within the optical bandgap region. The superior photocatalytic response of CeO2 synthesized in acetone compared to that of CeO2 synthesized in ethanol may be associated with an increase in long-/short-range disorder within the CeO2 structure, causing the Egap value to decrease, facilitating light absorption. Furthermore, surface (100) stabilization in samples synthesized in ethanol may be related to low photocatalytic activity. Photocatalytic degradation was facilitated by the generation of ·OH and ·O2- radicals as corroborated by the trapping experiment. The mechanism of enhanced photocatalytic activity has been proposed suggesting that samples synthesized in acetone tend to have lower e'âh· pair recombination, which is reflected in their higher photocatalytic response.
ABSTRACT
This study reports the synthesis of hybrid nanostructures composed of cerium dioxide and microcrystalline cellulose prepared by the microwave-assisted hydrothermal route under distinct temperature and pH values. Their structural, morphological and spectroscopic behaviors were investigated by X-Rays Diffraction, Field Emission Gun Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, and Fourier-Transform Infrared, Ultraviolet-Visible, Raman and Positron Annihilation Lifetime spectroscopies to evaluate the presence of structural defects and their correlation with the underlying mechanism regarding the biocide activity of the studied material. The samples showed mean crystallite sizes around 10 nm, characterizing the formation of quantum dots unevenly distributed along the cellulose surface with a certain agglomeration degree. The samples presented the characteristic Ce-O vibration close to 450 cm-1 and a second-order mode around 1050 cm-1, which is indicative of distribution of localized energetic levels originated from defective species, essential in the scavenging of reactive oxygen species. Positron spectroscopic studies showed first and second lifetime components ranging between 202-223 ps and 360-373 ps, respectively, revealing the presence of two distinct defective oxygen species, in addition to an increment in the concentration of Ce3+-oxygen vacancy associates as a function of temperature. Therefore, we have successfully synthesized hybrid nanoceria structures with potential multifunctional therapeutic properties to be further evaluated against the COVID-19.