Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Bone Marrow Transplant ; 56(11): 2705-2713, 2021 11.
Article in English | MEDLINE | ID: mdl-34234298

ABSTRACT

Brain injury in sickle cell disease (SCD) comprises a wide spectrum of neurological damage. Neurocognitive deficits have been described even without established neurological lesions. DTI is a rapid, noninvasive, and non-contrast method that enables detection of normal-appearing white matter lesions not detected by conventional magnetic resonance imaging (MRI). The aim of the study was to evaluate if stem cell transplantation can revert white matter lesions in patients with SCD. Twenty-eight SCD patients were evaluated with MRI and DTI before and after allogeneic hematopoietic stem cell transplantation (HSCT), compared with 26 healthy controls (HC). DTI metrics included fractional anisotropy (FA), mean diffusivity (MD), radial (RD), and axial (AD) diffusivity maps, global efficiency, path length, and clustering coefficients. Compared to HC, SCD patients had a lower FA (p = 0.0086) before HSCT. After HSCT, FA increased and was not different from healthy controls (p = 0.1769). Mean MD, RD, and AD decreased after HSCT (p = 0.0049; p = 0.0029; p = 0.0408, respectively). We confirm previous data of white matter lesions in SCD and present evidence that HSCT promotes recovery of brain injury with potential improvement of brain structural connectivity.


Subject(s)
Anemia, Sickle Cell , Brain Injuries , Hematopoietic Stem Cell Transplantation , White Matter , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Brain Injuries/pathology , Diffusion Tensor Imaging/methods , Humans , White Matter/diagnostic imaging , White Matter/pathology
2.
Rheumatology (Oxford) ; 60(12): 5538-5548, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33724344

ABSTRACT

OBJECTIVES: The rationale of autologous haematopoietic stem cell transplantation (AHSCT) for autoimmune diseases is that high-dose immunosuppression eradicates autoreactive T and B cells and the infused autologous haematopoietic stem cells promote reconstitution of a naïve and self-tolerant immune system. The aim of this study was to evaluate the reconstitution of different B cell subsets, both quantitatively and functionally, in SSc patients treated with AHSCT. METHODS: Peripheral blood was harvested from 22 SSc patients before transplantation and at 30, 60, 120, 180 and 360 days post-AHSCT. Immunophenotyping of B cell subsets, B cell cytokine production, signalling pathways and suppressive capacity of regulatory B cells (Bregs) were assessed by flow cytometry. RESULTS: Naïve B cell frequencies increased from 60 to 360 days post-AHSCT compared with pre-transplantation. Conversely, memory B cell frequencies decreased during the same period. Plasma cell frequencies transiently decreased at 60 days post-AHSCT. IL-10-producing Bregs CD19+CD24hiCD38hi and CD19+CD24hiCD27+ frequencies increased at 180 days. Moreover, the phosphorylation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase increased in B cells reconstituted post-AHSCT. Notably, CD19+CD24hiCD38hi Bregs recovered their ability to suppress production of Th1 cytokines by CD4+ T cells at 360 days post-AHSCT. Finally, IL-6 and TGF-ß1-producing B cells decreased following AHSCT. CONCLUSION: Taken together, these results suggest improvements in immunoregulatory and anti-fibrotic mechanisms after AHSCT for SSc, which may contribute to re-establishment of self-tolerance and clinical remission.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Hematopoietic Stem Cell Transplantation/methods , Memory B Cells/immunology , Scleroderma, Systemic/therapy , Adolescent , Adult , B-Lymphocytes, Regulatory/pathology , Cells, Cultured , Cytokines/metabolism , Female , Flow Cytometry , Follow-Up Studies , Humans , Immunophenotyping , Lymphocyte Count , Male , Memory B Cells/pathology , Middle Aged , Retrospective Studies , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Time Factors , Transplantation, Autologous , Treatment Outcome , Young Adult
3.
Leuk Lymphoma ; 62(1): 147-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32996373

ABSTRACT

Outcomes in acute myeloid leukemia (AML) are dependent on patient- and disease-characteristics, treatment, and socioeconomic factors. AML outcomes between resource-constrained and developed countries have not been compared directly. We analyzed two cohorts: from São Paulo state, Brazil (USP, n = 312) and Oxford, United Kingdom (OUH, n = 158). USP cohort had inferior 5-year overall survival compared with OUH (29% vs. 49%, adjusted-p=.027). USP patients have higher early-mortality (23% vs. 6% p<.001) primarily due to multi-resistant Gram-negative bacterial and fungal infections. USP had higher 5-year cumulative incidence of relapse (60% vs. 50%, p=.0022), were less likely to undergo hematopoietic stem cell transplant (HSCT) (28% vs. 75%, p<.001) and waited longer for HSCT (median, 23.8 vs. 7.2 months, p<.001). Three-year survival in relapsed patients was worse in USP than OUH (10% vs. 39%, p<.001). Our study indicates that efforts to improve AML outcomes in Brazil should focus on infection prevention and control, and access to HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Brazil/epidemiology , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/therapy , Retrospective Studies , United Kingdom
4.
Front Immunol ; 11: 2041, 2020.
Article in English | MEDLINE | ID: mdl-33013863

ABSTRACT

Sickle cell disease (SCD), the most common monogenic disease worldwide, is marked by a phenotypic variability that is, to date, only partially understood. Because inflammation plays a major role in SCD pathophysiology, we hypothesized that single nucleotide polymorphisms (SNP) in genes encoding functionally important inflammatory proteins might modulate the occurrence of SCD complications. We assessed the association between 20 SNPs in genes encoding Toll-like receptors (TLR), NK cell receptors (NKG), histocompatibility leukocyte antigens (HLA), major histocompatibility complex class I polypeptide-related sequence A (MICA) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and the occurrence of six SCD clinical complications (stroke, acute chest syndrome (ACS), leg ulcers, cholelithiasis, osteonecrosis, or retinopathy). This study was performed in a cohort of 500 patients. We found that the TLR2 rs4696480 TA, TLR2 rs3804099 CC, and HLA-G, rs9380142 AA genotypes were more frequent in patients who had fewer complications. Also, in logistic regression, the HLA-G rs9380142 G allele increased the risk of cholelithiasis (AG vs. AA, OR 1.57, 95%CI 1.16-2.15; GG vs. AA, OR 2.47, 95%CI 1.34-4.64; P = 0.02). For SNPs located in the NKG2D loci, in logistic regression, the A allele in three SNPs was associated with a lower frequency of retinopathy, namely, rs2246809 (AA vs. GG: OR 0.22, 95%CI 0.09-0.50; AG vs. GG: OR 0.47, 95%CI 0.31-0.71; P = 0.004, for patients of same origin), rs2617160 (AT vs. TT: OR 0.67, 95%CI 0.48-0.92; AA vs. TT: OR 0.45, 95%CI 0.23-0.84; P = 0.04), and rs2617169 (AA vs. TT: OR 0.33, 95%CI 0.13-0.82; AT vs. TT: OR 0.58, 95%CI 0.36-0.91, P = 0.049, in patients of same SCD genotype). These results, by uncovering susceptibility to, or protection against SCD complications, might contribute to a better understanding of the inflammatory pathways involved in SCD manifestations and to pave the way for the discovery of biomarkers that predict disease severity, which would improve SCD management.


Subject(s)
Alleles , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Female , Gene Frequency , Genotype , HLA Antigens/genetics , HLA Antigens/immunology , Haplotypes , Humans , Infant , Infant, Newborn , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/genetics , Toll-Like Receptors/genetics , Young Adult
6.
BMC Infect Dis ; 19(1): 310, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30953465

ABSTRACT

BACKGROUND: Early diagnosis of acute invasive fungal rhinosinusitis (AIFRS) is vital to improving outcomes in immunocompromised patients. This study evaluated the impact of a systematic protocol with nasal endoscopy and biopsies to early detect AIFRS in immunocompromised patients. Additionally, we compared the accuracy of frozen-section biopsy and culture with formalin-fixed paraffin-embedded (FFPE) biopsy. METHODS: Retrospective cohort in a Tertiary Referral Hospital. Patients with the suspected diagnosis of AIFRS were evaluated following a standardized protocol, including serial nasal endoscopies and biopsies when necessary. The sensitivity and specificity of frozen-section biopsy and culture were also compared with FFPE. RESULTS: The mortality rate related to AIFRS of this standardized cohort (13/43) was 30.2%. Better outcomes were observed in patients with disease limited to the turbinates and in those with higher peripheral neutrophils count. Frozen-section biopsy positivity correlated with FFPE findings for fungi detection (p-value < 0.0001), with a sensitivity of 90.6%, specificity of 72.7%, and accuracy of 86.0%. CONCLUSION: Implementation of this standardized protocol was related to a considerably low mortality rate among patients with suspected AIFRS at our Institution. Frozen-section biopsy revealed high accuracy to diagnose AIFRS. The current protocol including frozen-tissue biopsy improved the evaluation and survival rates of immunocompromised patients with presumed AIFRS.


Subject(s)
Biopsy/methods , Endoscopy/methods , Invasive Fungal Infections/diagnosis , Rhinitis/diagnosis , Sinusitis/diagnosis , Adolescent , Adult , Aged , Child , Child, Preschool , Early Diagnosis , Female , Frozen Sections , Humans , Immunocompromised Host , Infant , Invasive Fungal Infections/microbiology , Invasive Fungal Infections/mortality , Male , Middle Aged , Nose , Paraffin Embedding , Retrospective Studies , Rhinitis/microbiology , Rhinitis/mortality , Sensitivity and Specificity , Sinusitis/microbiology , Sinusitis/mortality , Survival Rate
7.
Br J Haematol ; 185(5): 918-924, 2019 06.
Article in English | MEDLINE | ID: mdl-30908604

ABSTRACT

Despite adequate immunization and penicillin prophylaxis, bacterial infections remain a leading cause of morbidity and mortality in patients with sickle cell disease (SCD). Besides hyposplenism, inflammatory and genetic factors might modulate their susceptibility to bacterial infections. We performed a candidate gene association of single nucleotide polymorphisms (SNPs) located in Toll-like receptor (TLR) genes, encoding prominent molecules for innate immune responses, with the occurrence of bacterial infections in patients with SCD. A cohort followed in centres in Brazil, France and Senegal (n = 430) was divided in two groups: patients who presented at least one episode of bacterial infection (n = 235) and patients who never had bacterial infections (n = 195). There were no differences in gender or age distribution among the groups. The frequency of the TLR2 rs4696480 TA genotype was significantly lower in the infected group (50% vs. 67%, odds ratio [OR] = 0·50, 95% confidence interval [CI] 0·34-0·75, P < 0·001), and the TT genotype was significantly higher in the infected group (15% vs. 5%, OR = 3·18, 95% CI 1·53-6·61, P < 0·001). Previous reports demonstrated higher secretion of inflammatory factors in cells from AA individuals, lower occurrence and severity of immune diseases in T carriers. The rs4696480 TA genotype might stand between deleterious effects of over inflammatory response (AA genotype) and inefficient responses (TT genotype) to infectious agents in SCD settings.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/microbiology , Bacterial Infections/genetics , Toll-Like Receptor 2/genetics , Adolescent , Adult , Africa/epidemiology , Aged , Anemia, Sickle Cell/epidemiology , Anemia, Sickle Cell/immunology , Bacterial Infections/epidemiology , Bacterial Infections/immunology , Brazil/epidemiology , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Male , Middle Aged , Young Adult
8.
J Clin Densitom ; 22(3): 420-428, 2019.
Article in English | MEDLINE | ID: mdl-30100221

ABSTRACT

Anthropomorphic measures among type 1 diabetic patients are changing as the obesity epidemic continues. Excess fat mass may impact bone density and ultimately fracture risk. We studied the interaction between bone and adipose tissue in type 1 diabetes subjects submitted to two different clinical managements: (I) conventional insulin therapy or (II) autologous nonmyeloablative hematopoietic stem-cell transplantation (AHST). The study comprised 3 groups matched by age, gender, height and weight: control (C = 24), type 1 diabetes (T1D = 23) and type 1 diabetes treated with AHST (T1D-AHST = 9). Bone mineral density (BMD) and trabecular bone score (TBS) were assessed by dual X-ray absorptiometry (DXA). 1H Magnetic resonance spectroscopy was used to assess bone marrow adipose tissue (BMAT) in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids (IHL), visceral (VAT) and subcutaneous adipose tissue (SAT). Individuals conventionally treated for T1D were more likely to be overweight (C = 23.8 ± 3.7; T1D = 25.3 ± 3.4; T1D-AHST = 22.5 ± 2.2 Kg/m2; p > 0.05), but there was no excessive lipid accumulation in VAT or liver. Areal BMD of the three groups were similar at all sites; lumbar spine TBS (L3) was lower in type 1 diabetes (p < 0.05). Neither SAT nor VAT had any association with bone parameters. Bone marrow adipose tissue (BMAT) lipid profiles were similar among groups. BMAT saturated lipids were associated with cholesterol, whereas unsaturated lipids had an association with IGF1. Overweight and normal weight subjects with type 1 diabetes have normal areal bone density, but lower trabecular bone scores. Adipose distribution is normal and BMAT volume is similar to controls, irrespective of clinical treatment.


Subject(s)
Adipose Tissue/diagnostic imaging , Bone Marrow/diagnostic imaging , Diabetes Mellitus, Type 1/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon , Adult , Body Composition , Bone Density , Bone Remodeling , Bone and Bones , Brazil , Cancellous Bone/diagnostic imaging , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 1/therapy , Female , Hematopoietic Stem Cell Transplantation , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Intra-Abdominal Fat/diagnostic imaging , Lipid Metabolism , Liver/diagnostic imaging , Liver/metabolism , Male , Middle Aged , Proton Magnetic Resonance Spectroscopy , Subcutaneous Fat/diagnostic imaging , Transplantation, Autologous , Young Adult
9.
Exp Hematol ; 66: 50-62, 2018 10.
Article in English | MEDLINE | ID: mdl-30076949

ABSTRACT

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome, which generates the oncogene BCR-ABL1. Protease-activated receptor 1 (PAR1) is involved in tumor progression and angiogenesis. We have previously reported that PAR1 expression is elevated in human leukemias that display a more aggressive clinical behavior, including the blast crisis of CML. In this study, we analyzed the crosstalk between the oncoprotein BCR-ABL and PAR1 in CML. Leukemic cell lines transfected with the BCR-ABL1 oncogene showed significantly higher expression levels of PAR1 compared with that of wild-type counterparts. This phenomenon was reversed by treatment with tyrosine kinase inhibitors (TKIs). Conversely, treatment with the PAR1 antagonist SCH79797 inhibited BCR-ABL expression. The PAR1 antagonist induced apoptosis in a dose- and time-dependent manner. Higher vascular endothelial growth factor (VEGF) levels were observed in cells transfected with BCR-ABL1 than in their wild-type counterparts. VEGF expression was strongly inhibited after treatment with either TKIs or the PAR1 antagonist. Finally, we evaluated PAR1 expression in CML patients who were either in the blast or chronic phases and had either received TKI treatment or no treatment. A significant decrease in PAR1 expression was observed in treatment-responsive patients, as opposed to a significant increase in PAR1 expression levels in treatment-resistant patients. Patients classified as high risk according to the Sokal index showed higher PAR1 expression levels. Our results demonstrate the crosstalk between BCR-ABL and PAR1. These data may offer important insight into the development of new therapeutic strategies for CML.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/pharmacology , Receptor, PAR-1/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Case-Control Studies , Cell Line, Tumor , Chromones/pharmacology , Disease Progression , Dose-Response Relationship, Drug , Female , Flavonoids/pharmacology , Fusion Proteins, bcr-abl/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Morpholines/pharmacology , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myeloid Cells/pathology , Philadelphia Chromosome , Pyrimidines/pharmacology , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptor, PAR-1/metabolism , Signal Transduction , Treatment Outcome , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
10.
Bone Marrow Transplant ; 53(10): 1319-1327, 2018 10.
Article in English | MEDLINE | ID: mdl-29670207

ABSTRACT

In the months that follow autologous hematopoietic stem cell transplantation (AHSCT), lymphopenia drives homeostatic proliferation, leading to oligoclonal expansion of residual cells. Here we evaluated how replicative senescent and exhausted cells associated with clinical outcomes of 25 systemic sclerosis (SSc) patients who underwent AHSCT. Patients were clinically monitored for skin (modified Rodnan's skin score, mRSS) and internal organ involvement and had blood samples collected before and semiannually, until 3 years post-AHSCT, for quantification of telomere length, CD8+CD28- and PD-1+ cells, and serum cytokines. Patients were retrospectively classified as responders (n = 19) and non-responders (n = 6), according to clinical outcomes. At 6 months post-AHSCT, mRSS decreased (P < 0.001) and the pulmonary function stabilized, when compared with pre-transplant measures. In parallel, inflammatory cytokine (IL-6 and IL-1ß) levels and telomere lengths decreased, whereas PD-1 expression on T-cells and the number of CD8+CD28- cells expressing CD57 and FoxP3 increased. After AHSCT, responder patients presented higher PD-1 expression on T- (P < 0.05) and B- (P < 0.01) cells, and lower TGF-ß, IL-6, G-CSF (P < 0.01), and IL-1ß, IL-17A, MIP-1α, and IL-12 (P < 0.05) levels than non-responders. Homeostatic proliferation after AHSCT results in transient telomere attrition and increased numbers of senescent and exhausted cells. High PD-1 expression is associated with better clinical outcomes after AHSCT.


Subject(s)
Cell Proliferation , Hematopoietic Stem Cell Transplantation , Programmed Cell Death 1 Receptor/blood , Scleroderma, Systemic , Telomere Homeostasis , Telomere/metabolism , Adult , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cytokines/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Scleroderma, Systemic/blood , Scleroderma, Systemic/pathology , Scleroderma, Systemic/therapy , Transplantation, Autologous
11.
Blood Adv ; 2(2): 126-141, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29365321

ABSTRACT

To evaluate the immunological mechanisms associated with clinical outcomes after autologous hematopoietic stem cell transplantation (AHSCT), focusing on regulatory T- (Treg) and B- (Breg) cell immune reconstitution, 31 systemic sclerosis (SSc) patients underwent simultaneous clinical and immunological evaluations over 36-month posttransplantation follow-up. Patients were retrospectively grouped into responders (n = 25) and nonresponders (n = 6), according to clinical response after AHSCT. Thymic function and B-cell neogenesis were respectively assessed by quantification of DNA excision circles generated during T- and B-cell receptor rearrangements. At the 1-year post-AHSCT evaluation of the total set of transplanted SSc patients, thymic rebound led to renewal of the immune system, with higher T-cell receptor (TCR) diversity, positive correlation between recent thymic emigrant and Treg counts, and higher expression of CTLA-4 and GITR on Tregs, when compared with pretransplant levels. In parallel, increased bone marrow output of newly generated naive B-cells, starting at 6 months after AHSCT, renovated the B-cell populations in peripheral blood. At 6 and 12 months after AHSCT, Bregs increased and produced higher interleukin-10 levels than before transplant. When the nonresponder patients were evaluated separately, Treg and Breg counts did not increase after AHSCT, and high TCR repertoire overlap between pre- and posttransplant periods indicated maintenance of underlying disease mechanisms. These data suggest that clinical improvement of SSc patients is related to increased counts of newly generated Tregs and Bregs after AHSCT as a result of coordinated thymic and bone marrow rebound.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Immune System/physiology , Scleroderma, Systemic/therapy , Adult , B-Lymphocytes/cytology , Bone Marrow/physiology , Female , Humans , Immune System/cytology , Lymphocyte Count , Male , Middle Aged , Prognosis , Retrospective Studies , Scleroderma, Systemic/immunology , Scleroderma, Systemic/mortality , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/physiology , Transplantation, Autologous/methods , Treatment Outcome , Young Adult
12.
Article in English | MEDLINE | ID: mdl-29218029

ABSTRACT

OBJECTIVE: To explore the impact on microvascular complications, long-term preservation of residual B-cell function and glycemic control of patients with type 1 diabetes treated with autologous nonmyeloablative hematopoietic stem-cell transplantation (AHST) compared with conventional medical therapy (CT). RESEARCH DESIGN AND METHODS: Cross-sectional data of patients treated with AHST were compared with patients who received conventional therapy from the Brazilian Type 1 Diabetes Study Group, the largest multicenter observational study in type 1 diabetes mellitus in Brazil. Both groups of patients had diabetes for 8 years on average. An assessment comparison was made on the presence of microvascular complications, residual function of B cell, A1c, and insulin dose of the patients. RESULTS: After a median of 8 years of diagnosis, none of the AHST-treated patients (n = 24) developed microvascular complications, while 21.5% (31/144) had at least one (p < 0.005) complication in the CT group (n = 144). Furthermore, no case of nephropathy was reported in the AHST group, while 13.8% of CT group (p < 0.005) developed nephropathy during the same period. With regard of residual B-cell function, the percentage of individuals with predicted higher C-peptide levels (IDAA1C ≤ 9) was about 10-fold higher in the AHST group compared with CT (75 vs. 8.3%) (p < 0.001) group. Among AHST patients, 54.1% (13/24) had the HbA1c < 7.0 compared with 13.1% in the CT (p < 0.001) group. CONCLUSION: Patients with newly diagnosed type 1 diabetes treated with AHST presented lower prevalence of microvascular complications, higher residual B-cell function, and better glycemic control compared with the CT group.

13.
Transpl Infect Dis ; 19(4)2017 Aug.
Article in English | MEDLINE | ID: mdl-28475281

ABSTRACT

Fever, skin rash, headache, and thrombocytopenia are considered hallmarks of dengue infection. However, these symptoms are frequently observed in infectious and non-infectious complications of hematopoietic stem cell transplant recipients and oncohematological patients. Thus, laboratory confirmation of dengue is relevant for prompt intervention and proper management of dengue in endemic and non-endemic regions. Because no prospective study of dengue has been conducted in these populations, the actual morbidity and mortality of dengue is unknown. In the present series, we describe five cases of dengue in patients living in endemic areas, emphasizing the prolonged course of the disease and the occurrence of prolonged viremia.


Subject(s)
Dengue Virus/isolation & purification , Dengue/diagnosis , Hematopoietic Stem Cell Transplantation/adverse effects , Viremia/diagnosis , Adolescent , Aged , Child, Preschool , Dengue/virology , Dengue Virus/genetics , Female , Fever , Hematologic Neoplasms , Humans , Immunocompromised Host , Male , Middle Aged , Thrombocytopenia , Viremia/virology
14.
Front Immunol ; 8: 167, 2017.
Article in English | MEDLINE | ID: mdl-28275376

ABSTRACT

Autologous hematopoietic stem cell transplantation (AHSCT) increases C-peptide levels and induces insulin independence in patients with type 1 diabetes. This study aimed to investigate how clinical outcomes may associate with the immunological status, especially concerning the balance between immunoregulation and autoreactivity. Twenty-one type 1 diabetes patients were monitored after AHSCT and assessed every 6 months for duration of insulin independence, C-peptide levels, frequencies of islet-specific autoreactive CD8+ T cells (CTL), regulatory lymphocyte subsets, thymic function, and T-cell repertoire diversity. In median follow-up of 78 (range 15-106) months, all patients became insulin-independent, resuming insulin after median of 43 (range 6-100) months. Patients were retrospectively divided into short- or prolonged-remission groups, according to duration of insulin independence. For the entire follow-up, CD3+CD4+ T-cell numbers remained lower than baseline in both groups, whereas CD3+CD8+ T-cell levels did not change, resulting in a CD4/CD8 ratio inversion. Memory CTL comprehended most of T cells detected on long-term follow-up of patients after AHSCT. B cells reconstituted to baseline levels at 2-3 months post-AHSCT in both patient groups. In the prolonged-remission-group, baseline islet-specific T-cell autoreactivity persisted after transplantation, but regulatory T cell counts increased. Patients with lower frequencies of autoreactive islet-specific T cells remained insulin-free longer and presented greater C-peptide levels than those with lower frequencies of these cells. Therefore, immune monitoring identified a subgroup of patients with superior clinical outcome of AHSCT. Our study shows that improved immunoregulation may balance autoreactivity endorsing better metabolic outcomes in patients with lower frequencies of islet-specific T cells. Development of new strategies of AHSCT is necessary to increase frequency and function of T and B regulatory cells and decrease efficiently autoreactive islet-specific T and B memory cells in type 1 diabetes patients undergoing transplantation.

15.
Stem Cell Res Ther ; 7(1): 92, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27406064

ABSTRACT

BACKGROUND: Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. METHODS: Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. RESULTS: T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. CONCLUSIONS: Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation.


Subject(s)
Bone Marrow Cells/metabolism , Diabetes Mellitus, Type 1/genetics , Mesenchymal Stem Cells/metabolism , RNA, Messenger/genetics , Transcriptome , Adolescent , Adult , Bone Marrow Cells/pathology , Case-Control Studies , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Female , Gene Expression Profiling , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Male , Mesenchymal Stem Cells/pathology , Middle Aged , RNA, Messenger/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
16.
Clin Immunol ; 169: 47-57, 2016 08.
Article in English | MEDLINE | ID: mdl-27318116

ABSTRACT

High dose immunosuppression followed by autologous hematopoietic stem cell transplantation (AHSCT) induces prolonged clinical remission in multiple sclerosis (MS) patients. However, how patient immune profiles are associated with clinical outcomes has not yet been completely elucidated. In this study, 37 MS patients were assessed for neurological outcomes, thymic function and long-term immune reconstitution after AHSCT. Patients were followed for a mean (SD) of 68.5 (13.9) months post-transplantation and were retrospectively clustered into progression- and non-progression groups, based on Expanded Disease Status Scale (EDSS) outcomes at last visit. After AHSCT, both patient groups presented increased regulatory T-cell subset counts, early expansion of central- and effector-memory CD8(+)T-cells and late thymic reactivation. However, the non-progression group presented early expansion of PD-1(+)CD8(+)T-cells and of PD-1-expressing CD19(+) B-cells. Here, we suggest that along with increased numbers of regulatory T-cell subsets, PD-1 inhibitory signaling is one possible immunoregulatory mechanism by which AHSCT restores immune tolerance in MS patients.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Multiple Sclerosis, Relapsing-Remitting/therapy , T-Lymphocytes/immunology , Thymus Gland/immunology , Adult , Antigens, CD19/immunology , Antigens, CD19/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Progression , Female , Humans , Lymphocyte Count , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Outcome Assessment, Health Care , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Retrospective Studies , Signal Transduction/immunology , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Time Factors , Transplantation, Autologous , Young Adult
17.
Br J Clin Pharmacol ; 80(4): 618-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25819742

ABSTRACT

AIM: The aim of this investigation was to develop a model-based dosing algorithm for busulfan and identify an optimal sampling scheme for use in routine clinical practice. METHODS: Clinical data from an ongoing study (n = 29) in stem cell transplantation patients were used for the purposes our analysis. A one compartment model was selected as basis for sampling optimization and subsequent evaluation of a suitable dosing algorithm. Internal and external model validation procedures were performed prior to the optimization steps using ED-optimality criteria. Using systemic exposure as parameter of interest, dosing algorithms were considered for individual patients with the scope of minimizing the deviation from target range as determined by AUC(0,6 h). RESULTS: Busulfan exposure after oral administration was best predicted after the inclusion of adjusted ideal body weight and alanine transferase as covariates on clearance. Population parameter estimates were 3.98 h(-1), 48.8 l and 12.3 l h(-1) for the absorption rate constant, volume of distribution and oral clearance, respectively. Inter-occasion variability was used to describe the differences between test dose and treatment. Based on simulation scenarios, a dosing algorithm was identified, which ensures target exposure values are attained after a test dose. Moreover, our findings show that a sparse sampling scheme with five samples per patient is sufficient to characterize the pharmacokinetics of busulfan in individual patients. CONCLUSION: The use of the proposed dosing algorithm in conjunction with a sparse sampling scheme may contribute to considerable improvement in the safety and efficacy profile of patients undergoing treatment for stem cell transplantation.


Subject(s)
Algorithms , Busulfan/administration & dosage , Busulfan/pharmacokinetics , Drug Dosage Calculations , Hematopoietic Stem Cell Transplantation/methods , Administration, Oral , Adolescent , Adult , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/blood , Antineoplastic Agents, Alkylating/pharmacokinetics , Busulfan/blood , Child , Female , Humans , Male , Middle Aged , Models, Biological , Young Adult
18.
Cell Transplant ; 24(2): 151-65, 2015.
Article in English | MEDLINE | ID: mdl-24256874

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system, due to an immune reaction against myelin proteins. Multipotent mesenchymal stromal cells (MSCs) present immunosuppressive effects and have been used for the treatment of autoimmune diseases. In our study, gene expression profile and in vitro immunomodulatory function tests were used to compare bone marrow-derived MSCs obtained from MS patients, at pre- and postautologous hematopoietic stem cell transplantation (AHSCT) with those from healthy donors. Patient MSCs comparatively exhibited i) senescence in culture; ii) similar osteogenic and adipogenic differentiation potential; iii) decreased expression of CD105, CD73, CD44, and HLA-A/B/C molecules; iv) distinct transcription at pre-AHSCT compared with control MSCs, yielding 618 differentially expressed genes, including the downregulation of TGFB1 and HGF genes and modulation of the FGF and HGF signaling pathways; v) reduced antiproliferative effects when pre-AHSCT MSCs were cocultured with allogeneic T-lymphocytes; vi) decreased secretion of IL-10 and TGF-ß in supernatants of both cocultures (pre- and post-AHSCT MSCs); and vii) similar percentages of regulatory cells recovered after MSC cocultures. The transcriptional profile of patient MSCs isolated 6 months posttransplantation was closer to pre-AHSCT samples than from healthy MSCs. Considering that patient MSCs exhibited phenotypic changes, distinct transcriptional profile and functional defects implicated in MSC immunomodulatory and immunosuppressive activity, we suggest that further MS clinical studies should be conducted using allogeneic bone marrow MSCs derived from healthy donors. We also demonstrated that treatment of MS patients with AHSCT does not reverse the transcriptional and functional alterations observed in patient MSCs.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cells/metabolism , Multiple Sclerosis/pathology , Transcriptome , Adult , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cluster Analysis , Coculture Techniques , Cytokines/analysis , Female , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Humans , Male , Mesenchymal Stem Cells/cytology , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/therapy , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Young Adult
19.
Clin Sci (Lond) ; 128(2): 111-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25116724

ABSTRACT

Autologous haematopoietic stem-cell transplantation (AHSCT) has been experimented as a treatment in patients affected by severe forms of multiple sclerosis (MS) who failed to respond to standard immunotherapy. The rationale of AHSCT is to 'reboot' the immune system and reconstitute a new adaptive immunity. The aim of our study was to identify, through a robust and unbiased transcriptomic analysis, any changes of gene expression in T-cells potentially underlying the treatment effect in patients who underwent non-myeloablative AHSCT for treatment of MS. We evaluated by microarray DNA-chip technology the gene expression of peripheral CD4+ and CD8+ T-cell subsets sorted from patients with MS patients before AHSCT, at 6 months, 1 year and 2 years after AHSCT and from healthy control subjects. Hierarchical clustering analysis revealed that reconstituted CD8+ T-cells of MS patients at 2 years post-transplantation, aggregated together with healthy controls, suggesting a normalization of gene expression in CD8+ cells post-therapy. When we compared the gene expression in MS patients before and after therapy, we detected a large number of differentially expressed genes (DEG) in both CD8+ and CD4+ T-cell subsets at all time points after transplantation. We catalogued the biological function of DEG and we selected 27 genes known to be involved in immune function for accurate quantification of gene expression by real-time PCR. The analysis confirmed and extended with quantitative data, a number of significant changes in both the CD4+ and CD8+ T-cells subsets from MS post-transplant. Notably, CD8+ T-cells revealed more extensive changes in the expression of genes involved in effector immune responses.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Sclerosis/therapy , Adaptive Immunity/genetics , Adult , CD4-Positive T-Lymphocytes , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL