Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 141: 106888, 2023 12.
Article in English | MEDLINE | ID: mdl-37839143

ABSTRACT

Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.


Subject(s)
Antiprotozoal Agents , Chalcones , Trichomonas Infections , Trichomonas vaginalis , Humans , Trichomonas vaginalis/metabolism , Chalcones/metabolism , Reactive Oxygen Species/metabolism , Trichomonas Infections/drug therapy , Trichomonas Infections/parasitology , Antiprotozoal Agents/metabolism , Phenols/metabolism
2.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36050829

ABSTRACT

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Subject(s)
Alzheimer Disease , Receptors, Histamine H3 , Acetylcholine , Acetylcholinesterase/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Histamine , Histamine Antagonists/pharmacology , Humans , Ligands , Molecular Docking Simulation , Piperazines/chemistry , Piperazines/pharmacology , Receptors, Histamine H3/chemistry , Structure-Activity Relationship , Tryptophan
SELECTION OF CITATIONS
SEARCH DETAIL
...