Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Photoacoustics ; 34: 100573, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076438

ABSTRACT

A proof-of-concept gas sensor based on a miniaturized and integrated fiber-optic photoacoustic detection module was introduced and demonstrated for the purpose of developing a custom tuning-fork (TF)-enhanced photoacoustic gas sensor. Instead of piezoelectric quartz tuning fork (QTF) in conventional quartz-enhanced photoacoustic spectroscopy (QEPAS), a low-cost custom aluminum alloy TF fabricated by mechanical processing was employed as a photoacoustic transducer and the vibration of TF was measured by fiber-optic Fabry-Pérot (FP) interferometer (FPI). The mechanical processing-based TF design scheme greatly increases the flexibility of the TF design with respect to the complex and expensive manufacture process of custom QTFs, and thus it can be better exploited to detect gases with slow vibrational-translational (V-T) relaxation rates and combine with light sources with poor beam quality. The resonance frequency and the quality factor of the designed custom TF at atmospheric pressure were experimentally determined to be 7.3 kHz and 4733, respectively. Dual-prong differential measurement method was proposed to double the photoacoustic signal and suppress the external same-direction noise. After detailed optimizing and investigating for the operating parameters by measuring H2O, the feasibility of the developed sensor for gas detection was demonstrated with a H2O minimum detection limit (MDL) of 1.2 ppm, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.8 × 10-8 cm-1 W/Hz1/2, which are better than the QTF-based photoacoustic sensors. The proposed gas sensing approach combined the advantages of QEPAS and fiber-optic sensing, which can greatly expand the application domains of PAS-based gas sensors.

2.
Opt Lett ; 48(22): 6072-6075, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966792

ABSTRACT

We propose an on-chip transverse magnetic (TM)-pass polarizer utilizing one-dimensional photonic crystals for multi-band operation. The TE0 modes in the 1550/2000nm wave band are suppressed by carefully selecting the pitch lengths of the nanoholes, leveraging the bandgap of the nanohole array. Conversely, the TM0 modes remain almost unaffected. The TM-pass polarizer employs a single-etched design on a standard 220 nm SOI platform and has a compact length of ∼ 17.9 µm. The simulated bandwidths (BWs) for polarization extinction ratios (PERs) > 20 dB and > 25 dB are about 210 nm and 195 nm for the 1550 nm wave band, and 265 nm and 240 nm for the 2000nm wave band. Moreover, the insertion losses (ILs) are ∼ 0.5/0.3 dB at wavelengths of 1550/2000nm, respectively. For the fabricated device, the measured BWs for PER > 20 dB and > 25 dB are evaluated to be larger than 100 nm for both 1550/2000nm wave bands. The measured ILs are 1/0.8 dB at wavelengths of 1550/2000nm. This straightforward and compatible design opens possibilities for the development of practical multi-band silicon photonic integrated circuits.

3.
Photoacoustics ; 34: 100571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38035174

ABSTRACT

An all-optical non-resonant photoacoustic spectroscopy system for multicomponent gas detection based on a silicon cantilever optical microphone (SCOM) and an aseismic photoacoustic cell is proposed and demonstrated. The SCOM has a high sensitivity of over 96.25 rad/Pa with sensitivity fluctuation less than ± 1.56 dB between 5 Hz and 250 Hz. Besides, the minimal detectable pressure (MDP) of the sensor is 0.55 µPa·Hz-1/2 at 200 Hz, which indicates that the fabricated sensor has high sensitivity and low noise level. Six different gases of CO2, CO, CH4, C2H6, C2H4, C2H2 are detected at the frequency of 10 Hz, whose detection limits (3σ) are 62.66 ppb, 929.11 ppb, 1494.97 ppb, 212.94 ppb, 1153.36 ppb and 417.61 ppb, respectively. The system achieves high sensitivity and low detection limits for trace gas detection. In addition, the system exhibits seismic performance with suppressing vibration noise by 4.5 times, and achieves long-term stable operation. The proposed non-resonant all-optical PAS multi-component gas detection system exhibits the advantages of anti-vibration performance, low gas consumption and long term stability, which provides a solution for working in complex environments with inherently safe.

4.
Photoacoustics ; 32: 100526, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37456141

ABSTRACT

In this paper, we propose and experimentally demonstrate a symmetric multi-resonant cavity photoacoustic cell (MR-PAC) with dual microphones detection, based on multi-resonator photoacoustic spectroscopy (MR-PAS). The designed photoacoustic cell contains three interconnected acoustic resonators to facilitate simultaneous control of three lasers for multi-gas sensing. Two microphones are symmetrically located at both sides of photoacoustic cell to implement two-point detection. The length of acoustic resonator is about 50 mm to minimize the photoacoustic cell, and the resonant frequency is around 3000 Hz. Feasibility and performance of the MR-PAC was demonstrated by simultaneous detection of C2H2, NO and CF4 using a near infrared diode laser and two mid infrared quantum cascade lasers. The minimum detection limits (MDLs) of C2H2, NO and CF4 are 480 ppb, 260 ppb and 0.57 ppb respectively with a 1 s integration time at normal atmospheric pressure. This minimized MR-PAS system is promising for the portable multi-gas sensing.

5.
Sensors (Basel) ; 23(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299857

ABSTRACT

Tunable Diode Laser Absorption Spectroscopy (TDLAS) has been widely applied in in situ and real-time monitoring of trace gas concentrations. In this paper, an advanced TDLAS-based optical gas sensing system with laser linewidth analysis and filtering/fitting algorithms is proposed and experimentally demonstrated. The linewidth of the laser pulse spectrum is innovatively considered and analyzed in the harmonic detection of the TDLAS model. The adaptive Variational Mode Decomposition-Savitzky Golay (VMD-SG) filtering algorithm is developed to process the raw data and could significantly eliminate the background noise variance by about 31% and signal jitters by about 12.5%. Furthermore, the Radial Basis Function (RBF) neural network is also incorporated and applied to improve the fitting accuracy of the gas sensor. Compared with traditional linear fitting or least squares method (LSM), the RBF neural network brings along the enhanced fitting accuracy within a large dynamic range, achieving an absolute error of below 50 ppmv (about 0.6%) for the maximum 8000 ppmv methane. The proposed technique in this paper is universal and compatible with TDLAS-based gas sensors without hardware modification, allowing direct improvement and optimization for current optical gas sensors.


Subject(s)
Lasers, Semiconductor , Optical Devices , Algorithms , Spectrum Analysis , Neural Networks, Computer
6.
Photoacoustics ; 27: 100389, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36068797

ABSTRACT

All-optical light-induced thermoacoustic spectroscopy (AO-LITS) is reported for the first time for highly sensitive and selective gas sensing, in which a commercial standard quartz tuning fork (QTF) is employed as a photothermal detector. The vibration of the QTF was measured by the highly sensitive fiber-optic Fabry-Pérot (FP) interferometry (FPI) technique, instead of the piezoelectric detection in the conventional LITS. To improve the stability of the sensor system, a compact QTF-based fiber-optic FPI module is fabricated by 3D printing technique and a dual-wavelength demodulation method with the ellipse-fitting differential-cross-multiplication algorithm (DW-EF-DCM) is exploited for the FPI measurement. The all-optical detection scheme has the advantages of remote detection and immunity to electromagnetic interference. A minimum detection limit (MDL) of 422 ppb was achieved for hydrogen sulfide (H2S), which was ~ 3 times lower than a conventional electrical LITS sensor system. The AO-LITS can provide a promising approach for remote and non-contact gas sensing in the whole infrared spectral region.

7.
Photoacoustics ; 27: 100382, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36068799

ABSTRACT

A small-volume highly-sensitive photoacoustic spectroscopy (PAS) methane detection system based on differential silicon cantilever optical microphones (SCOMs) is proposed and experimentally demonstrated. The system contains a compact non-resonant photoacoustic cell with a small volume of 1.2 mL and symmetrically-located dual SCOMs, as well as a distributed feedback laser at 1650.96 nm. The two identical SCOMs utilize the Fabry-Perot interferometric fiber-optic structure, with the differential Q-point demodulation algorithm to suppress the external vibration noise. Experimental results show that the SCOM has a high displacement sensitivity about 7.1 µm/Pa at 150 Hz and within 2.5 dB fluctuation between 5 Hz and 250 Hz. In the PAS gas sensing experiment, the normalized noise equivalent absorption coefficient of the PAS system is estimated to be 1.2 × 10-9 cm-1·W·Hz-1/2 and the minimum detection limit for methane is about 111.2 ppb with 1 s integration time. External disturbance is also applied to the dual SCOM system and results show excellent stability and noise resistance. The proposed PAS system exhibits superiorities of low gas consumption, high sensitivity and immunity to vibration and electromagnetic interference, which has an enormous potential in medicine, industry and environment.

8.
Photoacoustics ; 26: 100353, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35479193

ABSTRACT

In this paper, we propose and experimentally demonstrate an ultra-sensitive all-optical PAS gas sensor, incorporating with a near-infrared (NIR) diode laser, fiber-optic microphones (FOMs) and a double channel differential T-type photoacoustic cell. The FOM is realized by Fabry-Perot interferometry and novel gold-chromium (Au-Cr) composite nanomembranes. To meet the demand of high sensitivity and flat frequency response for the FOMs, the Au-Cr composite diaphragm is deliberately designed and fabricated by E-beam evaporation deposition with 330 nm in thickness and 6.35 mm in radius. Experimental results show that the FOM has a sensitivity of about 30 V/Pa and a flat frequency response from 300 to 900 Hz with fluctuation below 1 dB. Moreover, a double channel differential T-type photoacoustic cell is designed and employed in the all-optical PAS gas sensor, with the first-order resonant frequency of 610 Hz. The all-optical gas sensor is established and verified for CH4 detection and the normalized noise equivalent absorption (NNEA) is 4.42 × 10-10 W∙cm-1∙Hz-1/2. The minimum detection limit (MDL) of 36.45 ppb is achieved with a 1 s integration time. The MDL could be further enhanced to 4.87 ppb with an integration time of 81 s, allowing ultra-sensitive trace gas detection.

9.
ACS Nano ; 16(3): 3744-3755, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35234032

ABSTRACT

Currently, various electronic devices make our life more and more safe, healthy, and comfortable, but at the same time, they produce a large amount of nondegradable and nonrecyclable electronic waste that threatens our environment. In this work, we explore an environmentally friendly and flexible mechanical sensor that is biodegradable and recyclable. The sensor consists of a bacterial cellulose (BC) hydrogel as the matrix and imidazolium perchlorate (ImClO4) molecular ferroelectric as the functional element, the hybrid of which possesses a high sensitivity of 4 mV kPa-1 and a wide operational range from 0.2 to 31.25 kPa, outperforming those of most devices based on conventional functional biomaterials. Moreover, the BC hydrogel can be fully degraded into glucose and oligosaccharides, while ImClO4 can be recyclable and reused for the same devices, leaving no environmentally hazardous electronic waste.


Subject(s)
Cellulose , Hydrogels , Biocompatible Materials , Electronics
10.
Front Optoelectron ; 14(4): 407-413, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36637758

ABSTRACT

With the benefits of low latency, wide transmission bandwidth, and large mode field area, hollow-core antiresonant fiber (HC-ARF) has been a research hotspot in the past decade. In this paper, a hollow core step-index antiresonant fiber (HC-SARF), with stepped refractive indices cladding, is proposed and numerically demonstrated with the benefits of loss reduction and bending improvement. Glass-based capillaries with both high (n = 1.45) and low (as low as n = 1.36) refractive indices layers are introduced and formatted in the cladding air holes. Using the finite element method to perform numerical analysis of the designed fiber, results show that at the laser wavelengths of 980 and 1064 nm, the confinement loss is favorably reduced by about 6 dB/km compared with the conventional uniform cladding HC-ARF. The bending loss, around 15 cm bending radius of this fiber, is also reduced by 2 dB/km. The cladding air hole radius in this fiber is further investigated to optimize the confinement loss and the mode field diameter with single-mode transmission behavior. This proposed HC-SARF has great potential in optical fiber transmission and high energy delivery.

11.
Opt Express ; 26(16): 20450-20458, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119355

ABSTRACT

We propose and experimentally demonstrate wideband and continuously tunable fractional-order photonic Hilbert transformers (FrHT). These are realized by a single apodized planar Bragg grating within a high-birefringence planar substrate. The fractional order of the FrHT is continuously tuned and precisely controlled by changing the polarization state of the input light. The experimental characterization demonstrates an operating bandwidth up to 120 GHz with amplitude ripples below 3 dB. The optical phase shift response is directly measured to verify the proposed tuning property, demonstrating transform orders of around 1, 0.7, and 0.5. This approach is simple, stable, and compact compared to other existing methods and has great potential in the fields of ultrafast all-optical signal processing.

12.
Opt Lett ; 41(20): 4617-4620, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-28005850

ABSTRACT

A highly sensitive fiber optics twist sensor is proposed and experimentally demonstrated using elliptical-core few-mode fiber (e-FMF). With the help of a fixed-phase plate for conversion from LP11 to LP01 mode, the twist angle can be linearly mapped to the spatial rotation of LP11 mode profile and consequently discriminated by monitoring the optical power variation at the standard single-mode fiber (SSMF) output. When the optical power at the e-FMF output is 10 mW, the twist angle within the range of ±39° can be successfully detected with a sensitivity of more than 20 µW/°. Meanwhile, the twist direction can be identified simultaneously. In particular, when the twist angle ranges from -12.5° to 20.1°, the sensitivity is higher than 100 µW/°. Both temperature-insensitive operation from 20°C to 150°C and e-FMF length insensitive operation are experimentally verified.

13.
Opt Express ; 24(3): 2466-84, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906822

ABSTRACT

Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 µÎµ) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

14.
Opt Express ; 23(8): 9959-67, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969037

ABSTRACT

We experimentally demonstrate mode conversion by exploiting optical reflection of tilted few-mode fiber Bragg grating (FM-FBG). Mode conversions from LP(01) mode to higher symmetric and asymmetric modes are achieved, and more than 99.5% conversion efficiency from LP(01) to LP(11) mode is obtained using a 1.6°-tilted FM-FBG. Influences of the weakly tilted FM-FBG parameters on the property of mode conversion is analyzed and discussed. A simultaneous mode conversion and demultiplexing scheme for 4-mode × 3-wavelength multiplexing transmission is proposed and the modal crosstalk is analyzed based on the transmission spectra of the tilted FM-FBGs. The proposed approach shows potential applications in mode and wavelength division multiplexing communication systems.

15.
Opt Lett ; 38(17): 3448-51, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23988981

ABSTRACT

Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

16.
Opt Lett ; 38(5): 727-9, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455279

ABSTRACT

The monolithically integrated all-optical single-sideband (SSB) filter based on photonic Hilbert transform and planar Bragg gratings is proposed and experimentally demonstrated. An SSB suppression of 12 dB at 6 GHz and sideband switching are achieved via thermal tuning. An X-coupler, photonic Hilbert transformer, flat top reflector, and a micro heater are incorporated in a single silicon-on-silica substrate. The device can be thermally tuned by the micro heater on top of the channel waveguide. The device is fabricated using a combination of direct UV grating writing technology and photolithography.

SELECTION OF CITATIONS
SEARCH DETAIL