Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 2120, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242515

ABSTRACT

Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. However, the lack of transgenesis methods considerably hampers their wider use. Here we report development of a transgenesis method for Macrostomum lignano, a basal flatworm with excellent regeneration capacity. We demonstrate that microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of irradiation, frequently results in random integration of the transgene in the genome and its stable transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, we assembled and annotated the M. lignano genome, including genome-wide mapping of transcription start regions, and show its utility by generating multiple stable transgenic lines expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis method and annotated genome sequence will permit sophisticated genetic studies on stem cells and regeneration using M. lignano as a model organism.


Subject(s)
Gene Transfer Techniques , Genome, Helminth/genetics , Platyhelminths/genetics , Regeneration/genetics , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Organ Specificity/genetics , Ovary/metabolism , Platyhelminths/embryology , Platyhelminths/physiology , Promoter Regions, Genetic/genetics , Testis/metabolism , Transgenes/genetics
2.
Elife ; 52016 12 20.
Article in English | MEDLINE | ID: mdl-27997336

ABSTRACT

The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano.


Subject(s)
Germ Cells/physiology , Platyhelminths/cytology , Platyhelminths/genetics , Stem Cells/physiology , Transcriptome , Animals , Gene Expression Profiling
3.
Stem Cells Int ; 2012: 167265, 2012.
Article in English | MEDLINE | ID: mdl-23024658

ABSTRACT

Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. These membrane potentials are involved in regulation of such processes as migration guidance, cell proliferation, and body axis patterning during development and regeneration. While the importance of membrane potential in stem cell maintenance, proliferation, and differentiation is evident, the mechanisms of this bioelectric control of stem cell activity are still not well understood, and the role of specific ion channels in these processes remains unclear. Here we introduce the flatworm Macrostomum lignano as a versatile model organism for addressing these topics. We discuss biological and experimental properties of M. lignano, provide an overview of the recently developed experimental tools for this animal model, and demonstrate how manipulation of membrane potential influences regeneration in M. lignano.

SELECTION OF CITATIONS
SEARCH DETAIL
...