Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Metabolism ; 141: 155399, 2023 04.
Article in English | MEDLINE | ID: mdl-36642114

ABSTRACT

BACKGROUND: Production rates of the short-chain fatty acids (SCFA) acetate, propionate, and butyrate, which are beneficial metabolites of the intestinal microbiota, are difficult to measure in humans due to inaccessibility of the intestine to perform measurements, and the high first-pass metabolism of SCFAs in colonocytes and liver. We developed a stable tracer pulse approach to estimate SCFA whole-body production (WBP) in the accessible pool representing the systemic circulation and interstitial fluid. Compartmental modeling of plasma enrichment data allowed us to additionally calculate SCFA kinetics and pool sizes in the inaccessible pool likely representing the intestine with microbiota. We also studied the effects of aging and the presence of Chronic Obstructive Pulmonary Disease (COPD) on SCFA kinetics. METHODS: In this observational study, we designed a two-compartmental model to determine SCFA kinetics in 31 young (20-29 y) and 71 older (55-87 y) adults, as well as in 33 clinically stable patients with moderate to very severe COPD (mean (SD) FEV1, 46.5 (16.2)% of predicted). Participants received in the fasted state a pulse containing stable tracers of acetate, propionate, and butyrate intravenously and blood was sampled four times over a 30 min period. We measured tracer-tracee ratios by GC-MS and used parameters obtained from two-exponential curve fitting to calculate non-compartmental SCFA WBP and perform compartmental analysis. Statistics were done by ANCOVA. RESULTS: Acetate, propionate, and butyrate WBP and fluxes between the accessible and inaccessible pools were lower in older than young adults (all q < 0.0001). Moreover, older participants had lower acetate (q < 0.0001) and propionate (q = 0.019) production rates in the inaccessible pool as well as smaller sizes of the accessible and inaccessible acetate pools (both q < 0.0001) than young participants. WBP, compartmental SCFA kinetics, and pool sizes did not differ between COPD patients and older adults (all q > 0.05). Overall and independent of the group studied, calculated production rates in the inaccessible pool were on average 7 (acetate), 11 (propionate), and 16 (butyrate) times higher than non-compartmental WBP, and sizes of inaccessible pools were 24 (acetate), 31 (propionate), and 55 (butyrate) times higher than sizes of accessible pools (all p < 0.0001). CONCLUSION: Non-compartmental production measurements of SCFAs in the accessible pool (i.e. systemic circulation) substantially underestimate the SCFA production in the inaccessible pool, which likely represents the intestine with microbiota, as assessed by compartmental analysis.


Subject(s)
Fatty Acids, Volatile , Propionates , Young Adult , Humans , Aged , Acetates/metabolism , Butyrates , Aging
2.
Clin Nutr ; 40(8): 5020-5029, 2021 08.
Article in English | MEDLINE | ID: mdl-34365036

ABSTRACT

BACKGROUND: The amount of the macronutrients protein and carbohydrate (CHO) in a mixed meal is known to affect each other's digestion, absorption, and subsequent metabolism. While the effect of the amount of dietary protein and fat on the glycemic response is well studied, the ability of postprandial plasma amino acid patterns to predict the meal composition is unknown. OBJECTIVE: To study the postprandial plasma amino acid patterns in relation to the protein, CHO, and fat content of different mixed meals and to investigate if these patterns can predict the macronutrient meal composition. DESIGN: Ten older adults were given 9 meals with 3 different levels (low, medium, and high) of protein, CHO, and fat in different combinations, taking the medium content as that of a standardized western meal. We monitored the postprandial plasma response for amino acids, glucose, insulin, and triglycerides for 8 h and the areas under the curve (AUC) were subsequently calculated. Multiple regression analysis was performed to determine if amino acid patterns could predict the meal composition. RESULTS: Increasing meal CHO content reduced the postprandial plasma response of several amino acids including all branched chain amino acids (BCAA) (leucine; q < 0.0001, isoleucine; q = 0.0035, valine; q = 0.0022). The plasma BCAA patterns after the meal significantly predicted the meal's CHO content (leucine; p < 0.0001, isoleucine; p = 0.0003, valine; p = 0.0008) along with aspartate (p < 0.0001), tyrosine (p < 0.0001), methionine (p = 0.0159) and phenylalanine (p = 0.0332). Plasma citrulline predicted best the fat content of the meal (p = 0.0024). CONCLUSIONS: The postprandial plasma BCAA patterns are lower with increasing meal CHO content and are strong predictors of a mixed meal protein and CHO composition, as are plasma citrulline for the fat content. We hypothesize that postprandial plasma amino acid concentrations can be used to predict the meal's macronutrient composition.


Subject(s)
Amino Acids, Branched-Chain/blood , Dietary Carbohydrates/blood , Meals/physiology , Postprandial Period , Aged , Amino Acids/blood , Blood Glucose/analysis , Dietary Fats/blood , Dietary Proteins/blood , Eating/physiology , Female , Healthy Volunteers , Humans , Insulin/blood , Male , Predictive Value of Tests , Triglycerides/blood
3.
J Appl Physiol (1985) ; 130(2): 435-444, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33211598

ABSTRACT

Gut-related symptoms and an increase in markers of gut dysfunction have been observed in patients with chronic obstructive pulmonary disease (COPD). It remains unclear whether exercise, in relation to inducing hypoxia, plays a role in disturbances in protein digestion and amino acid absorption and whole body protein kinetics. Sixteen clinically stable patients with moderate-to-very severe COPD and 12 matched healthy subjects completed the study. Protein digestion and amino acid absorption, whole body protein kinetics were measured in the postabsorptive state via a continuous infusion of stable tracers in combination with orally administered stable tracer sips during 20 min of walking exercise and up to 4 h post exercise. In addition, concentrations of short-chain fatty acid (SCFA) and amino acids were measured. Patients with COPD completed one study day, walking at maximal speed, whereas healthy subjects completed two, one matched to the speed of a patient with COPD and one at maximal speed. The patients with COPD tolerated 20 min of vigorous intensity walking with an elevated heart rate (P < 0.0001) and substantial desaturation (P = 0.006). During exercise, we observed lower protein digestion (P = 0.04) and higher SCFA acetate (P = 0.04) and propionate (P = 0.02) concentrations on max speed study days, lower amino acid absorption (P = 0.004) in subjects with oxygen desaturation, and lower net protein breakdown (P = 0.03) and propionate concentrations (P = 0.04) in patients with COPD. During late recovery from exercise, amino acid absorption (P = 0.02) and net protein breakdown (P = 0.02) were lower in patients with COPD. Our data suggest that 20 min of walking exercise is sufficient to cause perturbations in gut function and whole body protein metabolism during and up to 4 h post exercise in older adults and in patients with COPD with exercise-induced hypoxia.NEW & NOTEWORTHY Gut function is disturbed in older adults with COPD. As exercise is the cornerstone of pulmonary rehabilitation in COPD, knowledge of the response of the gut to aerobic exercise is of importance.


Subject(s)
Amino Acids , Pulmonary Disease, Chronic Obstructive , Aged , Amino Acids/metabolism , Exercise , Humans , Kinetics , Proteolysis , Walking
4.
J Nutr ; 150(Suppl 1): 2538S-2547S, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33000166

ABSTRACT

The central position of methionine (Met) in protein metabolism indicates the importance of this essential amino acid for growth and maintenance of lean body mass. Therefore, Met might be a tempting candidate for supplementation. However, because Met is also the precursor of homocysteine (Hcy), a deficient intake of B vitamins or excessive intake of Met may result in hyperhomocysteinemia (HHcy), which is a risk factor for cardiovascular disease. This review discusses the evidence generated in preclinical and clinical studies on the importance and potentially harmful effects of Met supplementation and elaborates on potential clinical applications of supplemental Met with reference to clinical studies performed over the past 20 y. Recently acquired knowledge about the NOAEL (no observed adverse effect level) of 46.3 mg · kg-1 · d-1 and the LOAEL (lowest observed adverse effect level) of 91 mg · kg-1 · d-1 of supplemented Met will guide the design of future studies to further establish the role of Met as a potential (safe) candidate for nutritional supplementation in clinical applications.


Subject(s)
Body Fluid Compartments/metabolism , Cardiovascular Diseases/etiology , Dietary Supplements , Homocysteine/metabolism , Hyperhomocysteinemia/etiology , Methionine , Vitamin B Deficiency/complications , Animals , Cardiovascular Diseases/metabolism , Female , Humans , Hyperhomocysteinemia/metabolism , Male , Methionine/adverse effects , Methionine/metabolism , Methionine/pharmacology , Methionine/therapeutic use , Proteins/metabolism , Vitamin B Complex/blood , Vitamin B Deficiency/blood
5.
Food Funct ; 9(6): 3097-3103, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29850709

ABSTRACT

Açaí (Euterpe oleracea Mart.) berries, characterized by high polyphenol concentrations (predominantly anthocyanins), have demonstrated anti-inflammatory and anti-diabetic activities. The study objective was to determine the modulation of lipid and glucose-metabolism, as well as oxidative stress and inflammation, by an açaí-beverage (containing 1139 mg L-1 gallic acid equivalents of total polyphenolics) in 37 individuals with metabolic syndrome (BMI 33.5 ± 6.7 kg m-2) who were randomized to consume 325 mL twice per d of a placebo control or açaí-beverage for 12 weeks. Anthropometric measurements, dietary intake, and blood and urine samples were collected at baseline and after 12 weeks of consumption. Two functional biomarkers, plasma level of interferon gamma (IFN-γ) and urinary level of 8-isoprostane, were significantly decreased after 12 weeks of açaí consumption compared to the placebo control (p = 0.0141 and 0.0099, respectively). No significant modification of biomarkers for lipid- and glucose-metabolism was observed in this study. Findings from this small pilot study provide a weak indication that the selected dose of açaí polyphenols may be beneficial in metabolic syndrome as only two biomarkers for inflammation and oxidative stress were improved over 12 weeks. Follow-up studies should be conducted with higher polyphenol-doses before drawing conclusions regarding the efficacy of açaí polyphenols in metabolic syndrome.


Subject(s)
Euterpe/chemistry , Glucose/metabolism , Metabolic Syndrome/diet therapy , Plant Extracts/metabolism , Adolescent , Adult , Aged , Biomarkers/metabolism , Female , Fruit and Vegetable Juices/analysis , Humans , Lipid Metabolism , Male , Metabolic Syndrome/immunology , Metabolic Syndrome/metabolism , Middle Aged , Oxidative Stress , Pilot Projects , Young Adult
6.
Am J Clin Nutr ; 106(2): 675-683, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28637772

ABSTRACT

Background: l-Methionine (Met) is an essential amino acid for humans and is important for protein synthesis and the formation of polyamines and is involved in the synthesis of many metabolites, including homocysteine. Free-Met supplements have been claimed to have multiple positive effects; however, it remains unclear what the exact tolerance level is. With aging, Met metabolism changes, and increased plasma homocysteine is more apparent. High plasma concentrations of homocysteine are assumed to be associated with a high risk of developing atherosclerosis.Objective: We estimated the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL) of supplemented, oral, free Met in healthy older adults by examining the increase in plasma homocysteine as the primary determinant.Design: We provided capsules with free Met to 15 healthy older adult subjects for 4 wk at climbing dosages of, on average, 9.2, 22.5, 46.3 and 91 mg · kg body weight-1 · d-1 with washout periods of 2 wk between each intake. Before, at 2 and 4 wk during, and 2 wk after each dosage, we studied a complete panel of biochemical blood variables to detect possible intolerance to increased Met intake. Plasma homocysteine and body composition were measured, and tolerance, quality of life, and cognitive function were assessed via questionnaires.Results: Plasma homocysteine was elevated with the highest dose of supplemented Met. The estimated NOAEL of supplemented Met was set at 46.3 mg · kg body weight-1 · d-1, and the estimated LOAEL of supplemented Met was set at 91 mg · kg body weight-1 · d-1 (on the basis of the actual intakes) in subjects independent of sex. No signs of intolerance were observed via questionnaires or other blood variables at the LOAEL. There were no meaningful changes in body composition.Conclusions: On the basis of plasma homocysteine, the NOAEL of supplemented Met intake is 46.3 and the LOAEL is 91 mg · kg body weight-1 · d-1 in healthy older adults. Both the NOAEL and LOAEL are not associated with meaningful effects on health and wellbeing. This trial was registered at clinicaltrials.gov as NCT02566434.


Subject(s)
Dietary Supplements/adverse effects , Homocysteine/blood , Methionine/adverse effects , Aged , Aging/metabolism , Dose-Response Relationship, Drug , Female , Humans , Male , Methionine/administration & dosage , Middle Aged , Reference Values
7.
Appl Physiol Nutr Metab ; 42(2): 216-227, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28044449

ABSTRACT

While commercial dietary weight-loss programs typically advise exercise, few provide actual programing. The goal of this study was to compare the Curves Complete 90-day Challenge (CC, n = 29), which incorporates exercising and diet, to programs advocating exercise (Weight Watchers Points Plus (WW, n = 29), Jenny Craig At Home (JC, n = 27), and Nutrisystem Advance Select (NS, n = 28)) or control (n = 20) on metabolic syndrome (MetS) and weight loss. We randomized 133 sedentary, overweight women (age, 47 ± 11 years; body mass, 86 ± 14 kg; body mass index, 35 ± 6 kg/m2) into respective treatment groups for 12 weeks. Data were analyzed using chi square and general linear models adjusted for age and respective baseline measures. Data are means ± SD or mean change ± 95% confidence intervals (CIs). We observed a significant trend for a reduction in energy intake for all treatment groups and significant weight loss for all groups except control: CC (-4.32 kg; 95% CI, -5.75, -2.88), WW (-4.31 kg; 95% CI, -5.82, -2.96), JC (-5.34 kg; 95% CI, -6.86, -3.90), NS (-5.03 kg; 95% CI, -6.49, -3.56), and control (0.16 kg, 95% CI, -1.56, 1.89). Reduced MetS prevalence was observed at follow-up for CC (35% vs. 14%, adjusted standardized residuals (adjres.) = 3.1), but not WW (31% vs. 28% adjres. = 0.5), JC (37% vs. 42%, adjres. = -0.7), NS (39% vs. 50% adjres. = -1.5), or control (45% vs. 55% adjres. = -1.7). While all groups improved relative fitness (mL·kg-1·min-1) because of weight loss, only the CC group improved absolute fitness (L/min). In conclusion, commercial programs offering concurrent diet and exercise programming appear to offer greater improvements in MetS prevalence and cardiovascular function after 12 weeks of intervention.


Subject(s)
Diet, Reducing , Exercise , Metabolic Syndrome/prevention & control , Obesity/diet therapy , Overweight/diet therapy , Body Mass Index , Cardiorespiratory Fitness , Combined Modality Therapy/economics , Diet, Reducing/economics , Double-Blind Method , Energy Intake , Female , Follow-Up Studies , Humans , Insulin Resistance , Metabolic Syndrome/epidemiology , Metabolic Syndrome/etiology , Middle Aged , Obesity/metabolism , Obesity/physiopathology , Obesity/therapy , Overweight/metabolism , Overweight/physiopathology , Overweight/therapy , Patient Compliance , Prevalence , Resistance Training , Risk Factors , Sedentary Behavior , Texas/epidemiology , Weight Loss
8.
J Int Soc Sports Nutr ; 13: 12, 2016.
Article in English | MEDLINE | ID: mdl-27034623

ABSTRACT

BACKGROUND: Creatine monohydrate (CrM) and nitrate are popular supplements for improving exercise performance; yet have not been investigated in combination. We performed two studies to determine the safety and exercise performance-characteristics of creatine nitrate (CrN) supplementation. METHODS: Study 1 participants (N = 13) ingested 1.5 g CrN (CrN-Low), 3 g CrN (CrN-High), 5 g CrM or a placebo in a randomized, crossover study (7d washout) to determine supplement safety (hepatorenal and muscle enzymes, heart rate, blood pressure and side effects) measured at time-0 (unsupplemented), 30-min, and then hourly for 5-h post-ingestion. Study 2 participants (N = 48) received the same CrN treatments vs. 3 g CrM in a randomized, double-blind, 28d trial inclusive of a 7-d interim testing period and loading sequence (4 servings/d). Day-7 and d-28 measured Tendo™ bench press performance, Wingate testing and a 6x6-s bicycle ergometer sprint. Data were analyzed using a GLM and results are reported as mean ± SD or mean change ± 95 % CI. RESULTS: In both studies we observed several significant, yet stochastic changes in blood markers that were not indicative of potential harm or consistent for any treatment group. Equally, all treatment groups reported a similar number of minimal side effects. In Study 2, there was a significant increase in plasma nitrates for both CrN groups by d-7, subsequently abating by d-28. Muscle creatine increased significantly by d-7 in the CrM and CrN-High groups, but then decreased by d-28 for CrN-High. By d-28, there were significant increases in bench press lifting volume (kg) for all groups (PLA, 126.6, 95 % CI 26.3, 226.8; CrM, 194.1, 95 % CI 89.0, 299.2; CrN-Low, 118.3, 95 % CI 26.1, 210.5; CrN-High, 267.2, 95 % CI 175.0, 359.4, kg). Only the CrN-High group was significantly greater than PLA (p < 0.05). Similar findings were observed for bench press peak power (PLA, 59.0, 95 % CI 4.5, 113.4; CrM, 68.6, 95 % CI 11.4, 125.8; CrN-Low, 40.9, 95 % CI -9.2, 91.0; CrN-High, 60.9, 95 % CI 10.8, 111.1, W) and average power. CONCLUSIONS: Creatine nitrate delivered at 3 g was well-tolerated, demonstrated similar performance benefits to 3 g CrM, in addition, within the confines of this study, there were no safety concerns.


Subject(s)
Anaerobic Threshold/drug effects , Dietary Supplements , Muscle Strength/drug effects , Nitrates/administration & dosage , Physical Endurance/drug effects , Physical Fitness/physiology , Weight Lifting/physiology , Adult , Anaerobic Threshold/physiology , Athletic Performance , Blood Pressure/drug effects , Creatine , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Heart Rate/drug effects , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...