Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 107(2): 023001, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797599

ABSTRACT

Optical frequencies of the D lines of (6,7)Li were measured with a relative accuracy of 5 × 10⁻¹¹ using an optical comb synthesizer. Quantum interference in the laser induced fluorescence for the partially resolved D2 lines was found to produce polarization dependent shifts as large as 1 MHz. Our results resolve large discrepancies among previous experiments and between all experiments and theory. The fine-structure splittings for 6Li and 7Li are 10052.837(22) MHz and 10053.435(21) MHz. The splitting isotope shift is 0.599(30) MHz, in reasonable agreement with recent theoretical calculations.

2.
Phys Rev Lett ; 99(15): 155001, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17995174

ABSTRACT

We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profile, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.

3.
Phys Rev Lett ; 99(7): 075005, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17930904

ABSTRACT

We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elastic-collision regime at low initial Gamma(e), which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma(e) in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and we experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas.

4.
Phys Rev Lett ; 92(14): 143001, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15089533

ABSTRACT

We report optical absorption imaging of ultracold neutral strontium plasmas. The ion absorption spectrum determined from the images is Doppler broadened and thus provides a quantitative measure of the ion kinetic energy. For the particular plasma conditions studied, ions heat rapidly as they equilibrate during the first 250 ns after plasma formation. Equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer time scale of microseconds, pressure exerted by the trapped electron gas accelerates the ions radially.

5.
Phys Rev Lett ; 93(26 Pt 1): 265003, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15697986

ABSTRACT

We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma.

SELECTION OF CITATIONS
SEARCH DETAIL