Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233365

ABSTRACT

Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.

2.
NPJ Biofilms Microbiomes ; 9(1): 44, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400593

ABSTRACT

The intestinal epithelial barrier facilitates homeostatic host-microbiota interactions and immunological tolerance. However, mechanistic dissections of barrier dynamics following luminal stimulation pose a substantial challenge. Here, we describe an ex vivo intestinal permeability assay, X-IPA, for quantitative analysis of gut permeability dynamics at the whole-tissue level. We demonstrate that specific gut microbes and metabolites induce rapid, dose-dependent increases to gut permeability, thus providing a powerful approach for precise investigation of barrier functions.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Permeability , Host Microbial Interactions
3.
Proc Natl Acad Sci U S A ; 119(41): e2209624119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36201539

ABSTRACT

T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially harmful microbes, favored by IgA binding, reduces the immune system's actual exposure, preserving host-microbe equilibrium. The variable immunostimulation by microbes that has been charted in recent years may not solely be conditioned by triggering molecules or metabolites but also by physical limits to immune system exposure.


Subject(s)
Gastrointestinal Tract , Nuclear Receptor Subfamily 1, Group F, Member 3 , T-Lymphocytes, Regulatory , Animals , Escherichia coli , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunoglobulin A , Lymphocyte Activation , Mice , Myeloid Cells , Transcription Factors/metabolism
4.
Exp Brain Res ; 178(2): 151-66, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17031681

ABSTRACT

The adoption of bipedalism by hominids including man has complicated the tasks of balance control and the minimisation of body sway. We have investigated the role of the vestibular organs in controlling sway in the roll direction using galvanic vestibular stimulation (GVS). Two stance conditions were studied: during forward lean posterior compartment muscles are activated and during backward lean anterior compartment muscles are activated. GVS-evoked vestibular signals in stance control leg muscles as a group: all the active muscles in the leg on the GVS cathode side are excited together and those in the contralateral leg (anode side) relax. The subject sways towards the anode side. During treadmill walking, vestibular actions are subtly different: the actions are largely restricted to muscles acting at the ankle joint, occur at longer latencies, are not reciprocal in the opposite limb, are modulated throughout the step cycle (largest early in stance) and are reversed in sign in the peroneus longus muscle. The subject deviates towards the anode side. Hand contact with a firm object reduces GVS-evoked responses in leg muscles during treadmill walking. Responses to GVS are observed during over-ground walking but not significantly during bicycling on an ergometer. The observations suggest that these vestibular actions are part of a roll stabilisation mechanism. They may be mediated through different spinal premotor mechanisms during standing and walking and turned off during bicycling, when leg muscles have no balance control function.


Subject(s)
Postural Balance , Posture/physiology , Vestibule, Labyrinth/physiology , Walking/physiology , Adult , Electric Stimulation/methods , Electromyography/methods , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Exercise Test/methods , Female , Humans , Male , Middle Aged , Movement , Postural Balance/physiology , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL