Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Elife ; 122024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598269

ABSTRACT

Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.


Subject(s)
Listeria monocytogenes , Neural Tube Defects , Humans , Animals , Cell Death , Estrus , Food , HSP70 Heat-Shock Proteins
2.
Nat Struct Mol Biol ; 31(3): 476-488, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38297086

ABSTRACT

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.


Subject(s)
Drosophila Proteins , Kinesins , Animals , Kinesins/genetics , Kinesins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Dyneins/metabolism , Tropomyosin/metabolism , Drosophila/genetics , Microtubules/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
J Biol Chem ; 299(11): 105336, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827289

ABSTRACT

Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a ß-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.

4.
Sensors (Basel) ; 23(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687874

ABSTRACT

Several areas of wireless networking, such as wireless sensor networks or the Internet of Things, require application data to be distributed to multiple receivers in an area beyond the transmission range of a single node. This can be achieved by using the wireless medium's broadcast property when retransmitting data. Due to the energy constraints of typical wireless devices, a broadcasting scheme that consumes as little energy as possible is highly desirable. In this article, we present a novel multi-hop data dissemination protocol called BTP. It uses a game-theoretical model to construct a spanning tree in a decentralized manner to minimize the total energy consumption of a network by minimizing the transmission power of each node. Although BTP is based on a game-theoretical model, it neither requires information exchange between distant nodes nor time synchronization during its operation, and it inhibits graph cycles effectively. The protocol is evaluated in Matlab and NS-3 simulations and through real-world implementation on a testbed of 75 Raspberry Pis. The evaluation conducted shows that our proposed protocol can achieve a total energy reduction of up to 90% compared to a simple broadcast protocol in real-world experiments.

5.
Am Psychol ; 78(6): 729-742, 2023 09.
Article in English | MEDLINE | ID: mdl-37676152

ABSTRACT

A dual-level disapproval-respect model of tolerance is proposed, and its social psychological foundations are explicated from a self-categorization perspective. The model specifies tolerance as the combination of disapproval of others' beliefs, practices, or ways of life, which results from self-categorization at the level of in-group-out-group differentiation (Level 1), and respect, which is grounded in shared group membership at a higher level of self-categorization and the resulting superordinate identity (Level 2) and operates as a restraining force. In short, tolerance is disapproval restrained by respect, or, put differently, respect burdened with disapproval. Drawing on pertinent empirical evidence, it is argued that such tolerance is realistic and practicable in that people are willing to practice it and, when they are the recipients, likely to appreciate it. The model throws new light on the roles of affect and cognition in tolerance, on the interrelation of tolerance, authenticity, and dignity, as well as the interrelation of tolerance, justice, and struggles for social change, and on the limits of tolerance. The examination of these issues from the perspective of the disapproval-respect model makes the social psychological, moral, and political dimensions of tolerance explicit and clarifies their interrelations. Finally, directions for future basic as well as applied research on tolerance as specified in the model are suggested, and broader sociocultural implications of taking such tolerance seriously are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Cognition , Respect , Humans , Morals , Social Change , Social Justice
6.
Am Psychol ; 78(6): 748-749, 2023 09.
Article in English | MEDLINE | ID: mdl-37676155

ABSTRACT

The potential of the disapproval-respect model as a conceptual tool and explanatory device for the analysis of tolerance phenomena as well as its value as a guideline for future tolerance research is reiterated and further explained. Also, the distinctiveness of the model is underscored as is its realism with regard to the role of tolerance in processes of social influence and social change. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Hedgehogs , Social Change , Animals
7.
Nat Commun ; 14(1): 4233, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454201

ABSTRACT

The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.


Subject(s)
Alternative Splicing , RNA , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/metabolism , Nucleotide Motifs , RNA Splicing
8.
Nat Commun ; 14(1): 772, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774373

ABSTRACT

The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.


Subject(s)
Polynucleotide Adenylyltransferase , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA/metabolism , RNA Precursors/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
9.
Nucleic Acids Res ; 51(4): 1895-1913, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688322

ABSTRACT

RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.


Subject(s)
Poly(A)-Binding Proteins , RNA , Cold-Shock Response , DNA-Binding Proteins/genetics , Poly A/metabolism , Poly(A)-Binding Proteins/metabolism , Protein Binding , RNA/chemistry
10.
J Struct Biol ; 214(4): 107923, 2022 12.
Article in English | MEDLINE | ID: mdl-36410652

ABSTRACT

Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.


Subject(s)
von Willebrand Factor , von Willebrand Factor/genetics
11.
Pers Soc Psychol Bull ; 48(6): 823-843, 2022 06.
Article in English | MEDLINE | ID: mdl-34148460

ABSTRACT

Our own prior research has demonstrated that respect for disapproved others predicts and might foster tolerance toward them. This means that without giving up their disapproval of others' way of life, people can tolerate others when they respect them as equals (outgroup respect-tolerance hypothesis). Still, there was considerable variation in the study features. Moreover, the studies are part of a larger research project that affords many additional tests of our hypothesis. To achieve integration along with a more robust understanding of the relation between respect and tolerance, we (re)analyzed all existing data from this project, and we synthesized the results with the help of meta-analytic techniques. The average standardized regression coefficient, which describes the relationship between respect and tolerance, was 0.25 (95% confidence interval [CI] = [0.16, 0.34]). In addition to this overall confirmation of our hypothesis, the size of this coefficient varied with a number of variables. It was larger for numerical majorities than for minorities, smaller for high-status than for low-status groups, and larger for religious than for life-style groups. These findings should inspire further theory development and spur growth in the social-psychological literature on tolerance.


Subject(s)
Minority Groups , Humans
12.
Nature ; 597(7877): 533-538, 2021 09.
Article in English | MEDLINE | ID: mdl-34497420

ABSTRACT

Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently1 and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria. This revealed 70 bacteria-drug interactions, 29 of which had not to our knowledge been reported before. Over half of the new interactions can be ascribed to bioaccumulation; that is, bacteria storing the drug intracellularly without chemically modifying it, and in most cases without the growth of the bacteria being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using click chemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the composition of the community through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioural response of Caenorhabditis elegans to duloxetine. Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.


Subject(s)
Bacteria/metabolism , Bioaccumulation , Duloxetine Hydrochloride/metabolism , Gastrointestinal Microbiome/physiology , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacokinetics , Caenorhabditis elegans/metabolism , Cells/metabolism , Click Chemistry , Duloxetine Hydrochloride/adverse effects , Duloxetine Hydrochloride/pharmacokinetics , Humans , Metabolomics , Models, Animal , Proteomics , Reproducibility of Results
13.
EMBO Rep ; 22(10): e48018, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34402565

ABSTRACT

Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.


Subject(s)
Autophagy , Sarcomeres , Connectin/genetics , Connectin/metabolism , Muscle, Skeletal/metabolism , Sarcomeres/metabolism , Ubiquitination
14.
Genes Dev ; 35(17-18): 1304-1323, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34413138

ABSTRACT

Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5' and 3' processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA Transposable Elements , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
15.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34329466

ABSTRACT

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Embryonic Development/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Body Patterning/genetics , DNA-Binding Proteins/ultrastructure , Drosophila Proteins/ultrastructure , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/ultrastructure , RNA-Binding Proteins/ultrastructure , Scattering, Small Angle , Transcription Factors/ultrastructure , X-Ray Diffraction
16.
Commun Biol ; 4(1): 600, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017052

ABSTRACT

The eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly 'closed' conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an 'open' Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.


Subject(s)
Alu Elements , Plasmodium falciparum/metabolism , Ribosomes/metabolism , Signal Recognition Particle/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Nucleic Acid Conformation , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Ribosomes/genetics , Scattering, Small Angle
17.
Cell Rep ; 32(3): 107930, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697992

ABSTRACT

RNA-binding proteins (RBPs) commonly feature multiple RNA-binding domains (RBDs), which provide these proteins with a modular architecture. Accumulating evidence supports that RBP architectural modularity and adaptability define the specificity of their interactions with RNA. However, how multiple RBDs recognize their cognate single-stranded RNA (ssRNA) sequences in concert remains poorly understood. Here, we use Upstream of N-Ras (Unr) as a model system to address this question. Although reported to contain five ssRNA-binding cold-shock domains (CSDs), we demonstrate that Unr includes an additional four CSDs that do not bind RNA (pseudo-RBDs) but are involved in mediating RNA tertiary structure specificity by reducing the conformational heterogeneity of Unr. Disrupting the interactions between canonical and non-canonical CSDs impacts RNA binding, Unr-mediated translation regulation, and the Unr-dependent RNA interactome. Taken together, our studies reveal a new paradigm in protein-RNA recognition, where interactions between RBDs and pseudo-RBDs select RNA tertiary structures, influence RNP assembly, and define target specificity.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , Amino Acid Sequence , Animals , Drosophila melanogaster , Protein Biosynthesis , Protein Domains
18.
ACS Omega ; 5(8): 3979-3995, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149225

ABSTRACT

Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme which regulates the methylation of Lys4 of histone 3 (H3) and is overexpressed in certain cancers. We used structures of H3 substrate analogues bound to LSD1 to design macrocyclic peptide inhibitors of LSD1. A linear, Lys4 to Met-substituted, 11-mer (4) was identified as the shortest peptide distinctly interacting with LSD1. It was evolved into macrocycle 31, which was >40 fold more potent (K i = 2.3 µM) than 4. Linear and macrocyclic peptides exhibited unexpected differences in structure-activity relationships for interactions with LSD1, indicating that they bind LSD1 differently. This was confirmed by the crystal structure of 31 in complex with LSD1-CoREST1, which revealed a novel binding mode at the outer rim of the LSD1 active site and without a direct interaction with FAD. NMR spectroscopy of 31 suggests that macrocyclization restricts its solution ensemble to conformations that include the one in the crystalline complex. Our results provide a solid basis for the design of optimized reversible LSD1 inhibitors.

19.
Cultur Divers Ethnic Minor Psychol ; 26(1): 32-41, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30816747

ABSTRACT

OBJECTIVES: Fostering the identification of societal minorities with the larger society is an essential political aim. In this article, we analyze whether minority members' perception of being recognized by society leads to a stronger identification with society, and whether this identification fosters more willingness to recognize other societal subgroups' members as equal members of society. METHOD: Our analysis is based on both a cross-sectional (N = 1,059, 49% female, mean age = 31 years, 78% with migration background, i.e., first- to third-generation) and a longitudinal (N = 159, 57% female, mean age = 30 years, 76% with migration background) sample of Muslims living in Germany. RESULTS: Structural equation modeling and path analyses suggested that the perception to be recognized by society as equals yielded stronger identification with Germany. In contrast, the perception that one's needs are recognized had no effect on the identification with Germany, while the perception of achievement recognition even tended to decrease identification with Germany. Identification with Germany, in turn, led to an increased willingness of respondents to extend equality recognition to subgroups' members whose beliefs and/or practices our respondents (on average) disapproved. CONCLUSIONS: When the societal majority imparts to minorities a sense of being recognized as equals, this equality recognition colors the broader societal framework within which intergroup relations take shape. We further suggest that-if it is desired that subgroups identify with society-the most viable option is a multicultural model of society, which enables minorities to simultaneously retain their subgroup identity. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Islam/psychology , Religion and Psychology , Social Perception , Adult , Cross-Sectional Studies , Cultural Diversity , Female , Germany , Group Processes , Humans , Male , Minority Groups/psychology
20.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31226277

ABSTRACT

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Carrier Proteins/chemistry , Chaetomium/genetics , Chromosomal Proteins, Non-Histone/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Chaetomium/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Chromosomes/ultrastructure , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression , HeLa Cells , Humans , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...