Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32769182

ABSTRACT

We sought to identify and study the antibiofilm protein secreted by the marine bacterium Pseudoalteromonas sp. strain 3J6. The latter is active against marine and terrestrial bacteria, including Pseudomonas aeruginosa clinical strains forming different biofilm types. Several amino acid sequences were obtained from the partially purified antibiofilm protein, named alterocin. The Pseudoalteromonas sp. 3J6 genome was sequenced, and a candidate alt gene was identified by comparing the genome-encoded proteins to the sequences from purified alterocin. Expressing the alt gene in another nonactive Pseudoalteromonas sp. strain, 3J3, demonstrated that it is responsible for the antibiofilm activity. Alterocin is a 139-residue protein that includes a predicted 20-residue signal sequence, which would be cleaved off upon export by the general secretion system. No sequence homology was found between alterocin and proteins of known functions. The alt gene is not part of an operon and adjacent genes do not seem related to alterocin production, immunity, or regulation, suggesting that these functions are not fulfilled by devoted proteins. During growth in liquid medium, the alt mRNA level peaked during the stationary phase. A single promoter was experimentally identified, and several inverted repeats could be binding sites for regulators. alt genes were found in about 30% of the Pseudoalteromonas genomes and in only a few instances of other marine bacteria of the Hahella and Paraglaciecola genera. Comparative genomics yielded the hypothesis that alt gene losses occurred within the Pseudoalteromonas genus. Overall, alterocin is a novel kind of antibiofilm protein of ecological and biotechnological interest.IMPORTANCE Biofilms are microbial communities that develop on solid surfaces or interfaces and are detrimental in a number of fields, including for example food industry, aquaculture, and medicine. In the latter, antibiotics are insufficient to clear biofilm infections, leading to chronic infections such as in the case of infection by Pseudomonas aeruginosa of the lungs of cystic fibrosis patients. Antibiofilm molecules are thus urgently needed to be used in conjunction with conventional antibiotics, as well as in other fields of application, especially if they are environmentally friendly molecules. Here, we describe alterocin, a novel antibiofilm protein secreted by a marine bacterium belonging to the Pseudoalteromonas genus, and its gene. Alterocin homologs were found in about 30% of Pseudoalteromonas strains, indicating that this new family of antibiofilm proteins likely plays an important albeit nonessential function in the biology of these bacteria. This study opens up the possibility of a variety of applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , Pseudoalteromonas/genetics , Bacterial Proteins/biosynthesis
3.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31896640

ABSTRACT

Biofilms produced by Pseudomonas aeruginosa present a serious threat to cystic fibrosis patients. Here, we report the draft genome sequences of four cystic fibrosis isolates displaying various mucoid and biofilm phenotypes. The estimated average genome size was about 6,255,986 ± 50,202 bp with a mean G+C content of 66.52 ± 0.06%.

4.
Data Brief ; 7: 1031-1037, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27761493

ABSTRACT

To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

5.
J Proteomics ; 128: 203-17, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26244908

ABSTRACT

Infectious diseases caused by pathogens such as Staphylococcus aureus are still a major threat for human health. Proteome analyses allow detailed monitoring of the molecular interplay between pathogen and host upon internalization. However, the investigation of the responses of both partners is complicated by the large excess of host cell proteins compared to bacterial proteins as well as by the fact that only a fraction of host cells are infected. In the present study we infected human alveolar epithelial A549 cells with S. aureus HG001 pMV158GFP and separated intact bacteria from host cell debris or infected from non-infected A549 cells by cell sorting to enable detailed proteome analysis. During the first 6.5h in the intracellular milieu S. aureus displayed reduced growth rate, induction of the stringent response, adaptation to microaerobic conditions as well as cell wall stress. Interestingly, both truly infected host cells and those not infected but exposed to secreted S. aureus proteins and host cell factors showed differences in the proteome pattern compared to A549 cells which had never been in contact with S. aureus. However, adaptation reactions were more pronounced in infected compared to non-infected A549 bystander cells.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/microbiology , Pneumonia, Staphylococcal/metabolism , Proteome/metabolism , Respiratory Mucosa/metabolism , Staphylococcus aureus/metabolism , Cell Line , Cytokines/metabolism , Host-Pathogen Interactions , Humans , Pneumonia, Staphylococcal/microbiology , Respiratory Mucosa/microbiology
6.
FEMS Microbiol Lett ; 356(2): 193-200, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24861220

ABSTRACT

Pseudomonas aeruginosa biofilm formation was increased by addition of sucrose to Luria-Bertani medium, whereas addition of NaCl to a final similar osmolarity and use of maltose instead of sucrose, were ineffective. In a previous study, we showed that the extracytoplasmic sigma factor SigX is activated in the presence of sucrose. The sucrose-mediated pellicle increase was abolished in a sigX mutant strain. Sucrose addition led to an increase in pel expression and cyclic-diguanylate (c-di-GMP) pool level production. Interestingly, these two phenotypes were strongly decreased in a sigX mutant. Since pel is not known as a SigX-target, we suspect SigX to be involved in the c-di-GMP production. We found that expression of the diguanylate cyclase PA4843 gene was increased in the presence of sucrose at least partly through SigX activity. Our study shows that sucrose itself rather than osmolarity favours the biofilm mode of P. aeruginosa through the activation of SigX.


Subject(s)
Biofilms/growth & development , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/physiology , Sigma Factor/metabolism , Sucrose/metabolism , Culture Media/chemistry , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/biosynthesis , Gene Deletion , Gene Expression , Gene Expression Profiling , Phosphorus-Oxygen Lyases/biosynthesis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sigma Factor/genetics , Sodium Chloride/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...