Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Clin Neurophysiol ; 162: 141-150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631074

ABSTRACT

OBJECTIVE: The laryngeal adductor reflex (LAR) is vital for airway protection and can be electrophysiologically obtained under intravenous general anesthesia (IGA). This makes the electrophysiologic LAR (eLAR) an important tool for monitoring of the vagus nerves and relevant brainstem circuitry during high-risk surgeries. We investigated the intra-class variability of normal and expected abnormal eLAR. METHODS: Repeated measures of contralateral R1 (cR1) were performed under IGA in 58 patients. Data on presence/absence of cR2 and potential confounders were also collected. Review of neuroimaging, pathology and clinical exam, allowed classification into normal and expected abnormal eLAR groups. Using univariate and multivariate analysis we studied the variability of cR1 parameters and their differences between the two groups. RESULTS: In both groups, cR1 latencies had coefficients of variation of <2%. In the abnormal group, cR1 had longer latencies, required higher activation currents and was more frequently desynchronized and unsustained; cR2 was more frequently absent. CONCLUSIONS: cR1 latencies show high analytical precision for measurements. Delayed onset, difficult to elicit, desynchronized and unsustained cR1, and absence of cR2 signal an abnormal eLAR. SIGNIFICANCE: Understanding the variability and behavior of normal and abnormal eLAR under IGA can aid in the interpretation of its changes during monitoring.


Subject(s)
Reflex , Humans , Male , Female , Middle Aged , Aged , Reflex/physiology , Adult , Laryngeal Muscles/physiopathology , Laryngeal Muscles/physiology , Electromyography/methods
3.
J Clin Neurophysiol ; 41(2): 96-107, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306217

ABSTRACT

SUMMARY: Similar to adults, children undergoing brain surgery can significantly benefit from intraoperative neurophysiologic mapping and monitoring. Although young brains present the advantage of increased plasticity, during procedures in close proximity to eloquent regions, the risk of irreversible neurological compromise remains and can be lowered further by these techniques. More so, pathologies specific to the pediatric population, such as neurodevelopmental lesions, often result in medically refractory epilepsy. Thus, their successful surgical treatment also relies on accurate demarcation and resection of the epileptogenic zone, processes in which intraoperative electrocorticography is often employed. However, stemming from the development and maturation of the central and peripheral nervous systems as the child grows, intraoperative neurophysiologic testing in this population poses methodologic and interpretative challenges even to experienced clinical neurophysiologists. For example, it is difficult to perform awake craniotomies and language testing in the majority of pediatric patients. In addition, children may be more prone to intraoperative seizures and exhibit afterdischarges more frequently during functional mapping using electrical cortical stimulation because of high stimulation thresholds needed to depolarize immature cortex. Moreover, choice of anesthetic regimen and doses may be different in pediatric patients, as is the effect of these drugs on immature brain; these factors add additional complexity in terms of interpretation and analysis of neurophysiologic recordings. Below, we are describing the modalities commonly used during intraoperative neurophysiologic testing in pediatric brain surgery, with emphasis on age-specific clinical indications, methodology, and challenges.


Subject(s)
Anesthetics , Brain Neoplasms , Adult , Humans , Child , Brain Mapping/methods , Brain/surgery , Electrocorticography , Craniotomy/methods , Anesthetics/pharmacology , Brain Neoplasms/surgery
4.
Clin Neurophysiol ; 159: 13-23, 2024 03.
Article in English | MEDLINE | ID: mdl-38241911

ABSTRACT

OBJECTIVE: Extraoperative electrical cortical stimulation (ECS) facilitates defining the seizure onset zone (SOZ) and eloquent cortex. The clinical relevance of stimulation-induced afterdischarges (ADs) is not well defined. METHODS: Fifty-five patients who underwent intracranial electroencephalogram evaluations with ECS were retrospectively identified. ADs were identified in these recordings and categorized by pattern, location, and association with stimulation-induced seizures. RESULTS: ADs were generated in 1774/9285 (19%) trials. Rhythmic spikes and irregular ADs within the stimulated bipolar contact pair were predictive of location within the SOZ compared to non-epileptogenic/non-irritative cortex (rhythmic spikes OR 2.24, p = 0.0098; irregular OR 1.39; p = 0.013). ADs immediately preceding stimulated seizures occurred at lower stimulation intensity thresholds compared to other stimulations (mean 2.94 ± 0.28 mA vs. 4.16 ± 0.05 mA respectively; p = 0.0068). CONCLUSIONS: Changes in AD properties can provide clinically relevant data in extraoperative stimulation mapping. SIGNIFICANCE: Although not exclusive to the SOZ, the generation of rhythmic spikes may suggest that a stimulation location is within the SOZ, while decreased stimulation intensity thresholds eliciting ADs may alert clinicians to a heightened probability of seizure generation with subsequent stimulation.


Subject(s)
Electroencephalography , Seizures , Humans , Retrospective Studies , Electric Stimulation , Probability , Seizures/diagnosis
6.
Brain Sci ; 12(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36009088

ABSTRACT

Objective: This pilot study aims to show the feasibility of noninvasive and real-time cerebral hemodynamic monitoring during carotid endarterectomy (CEA) via diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS). Methods: Cerebral blood flow index (CBFi) was measured unilaterally in seven patients and bilaterally in seventeen patients via DCS. In fourteen patients, hemoglobin oxygenation changes were measured bilaterally and simultaneously via NIRS. Cerebral autoregulation (CAR) and cerebrovascular resistance (CVR) were estimated using CBFi and arterial blood pressure data. Further, compensatory responses to the ipsilateral hemisphere were investigated at different contralateral stenosis levels. Results: Clamping of carotid arteries caused a sharp increase of CVR (~70%) and a marked decrease of ipsilateral CBFi (57%). From the initial drop, we observed partial recovery in CBFi, an increase of blood volume, and a reduction in CVR in the ipsilateral hemisphere. There were no significant changes in compensatory responses between different contralateral stenosis levels as CAR was intact in both hemispheres throughout the CEA phase. A comparison between hemispheric CBFi showed lower ipsilateral levels during the CEA and post-CEA phases (p < 0.001, 0.03). Conclusion: DCS alone or combined with NIRS is a useful monitoring technique for real-time assessment of cerebral hemodynamic changes and allows individualized strategies to improve cerebral perfusion during CEA by identifying different hemodynamic metrics.

7.
Handb Clin Neurol ; 186: 11-38, 2022.
Article in English | MEDLINE | ID: mdl-35772881

ABSTRACT

Electroencephalography (EEG) and electrocorticography (ECoG) are two important neurophysiologic techniques used in the operating room for monitoring and mapping electrical brain activity. In this chapter, we detail their principle, recording methodology, and address specifics of their interpretation in the intraoperative setting (e.g., effect of anesthetics), as well as their clinical applications in epilepsy and non-epilepsy surgeries. In addition, we address differences between scalp, surface, and deep cortical recordings that will help towards a more reliable interpretation of the significance of electrophysiologic parameters such as amplitude and morphology as well as in differentiation between abnormal and normal patterns of electrical brain activity. Electrical stimulation is used for intraoperative mapping of different cortical functions such as language, parietal, and motor. Stimulation paradigms used in clinical practice vary with regard to stimulation frequencies and probes being used. Parameters, such as the number of phases per pulse, pulse/phase duration, pulse frequency, organization, and polarity, define their characteristics, including their safety, propensity to trigger seizures, efficiency and reliability of stimulation, and the mapping thresholds. Specifically, in this chapter, we will address differences between monopolar and bipolar stimulation; anodal and cathodal polarity; monophasic and biphasic pulses; constant voltage, and constant current paradigms.


Subject(s)
Brain Mapping , Electrocorticography , Brain Mapping/methods , Electric Stimulation/methods , Electroencephalography/methods , Humans , Reproducibility of Results
8.
Handb Clin Neurol ; 186: 103-121, 2022.
Article in English | MEDLINE | ID: mdl-35772880

ABSTRACT

Intraoperative neuromonitoring (IONM) complements modern presurgical investigations by providing information about the epileptic focus as well as real-time identification of critical functional tissue and assessment of ongoing neural integrity during resective epilepsy surgery. This chapter summarizes current IONM methods for mapping the epileptic focus and for mapping and monitoring functionally important structures with direct brain stimulation and evoked potentials. These techniques include electrocorticography, computerized high-frequency oscillation mapping, single-pulse electric stimulation, cortical and subcortical motor evoked potentials, somatosensory evoked potentials, visual evoked potentials, and cortico-cortical evoked potentials. They may help to maximize epileptic tissue resection while avoiding permanent postoperative neurologic deficits.


Subject(s)
Epilepsy , Neurophysiology , Brain Mapping/methods , Epilepsy/surgery , Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory/physiology , Evoked Potentials, Visual , Humans , Neurosurgical Procedures/methods
9.
Handb Clin Neurol ; 186: 355-374, 2022.
Article in English | MEDLINE | ID: mdl-35772895

ABSTRACT

Cerebral ischemia during carotid endarterectomy occurs via several mechanisms: inadequate collateral blood flow during carotid cross-clamping, thromboembolism due to carotid manipulation, and/or rethrombosis at the surgical site. Perioperative strokes increase not only the morbidity of endarterectomy but also its short- and long-term mortality. However, while several predictors of cerebral ischemia have been identified, precise individual risk is hard to assess. Since nonselective shunting during carotid cross-clamping is neither risk-free nor eliminates perioperative stroke, it is advisable to apply intraoperative monitoring techniques for detection and reversal of cerebral ischemia, which may occur at various stages of the procedure. This chapter addresses the methods available for monitoring, with an emphasis on neurophysiologic techniques, which are preferable given their direct assessment of how a decrease in cerebral blood flow impacts brain function. These include electroencephalography, somatosensory evoked potentials, and transcranial motor evoked potentials. Details regarding the methodology, advantages, disadvantages, and interpretation of these tests will be discussed within the anatomic, physiologic, surgical, and anesthetic contexts.


Subject(s)
Brain Ischemia , Endarterectomy, Carotid , Stroke , Brain Ischemia/diagnosis , Cerebral Infarction , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Humans , Monitoring, Intraoperative
10.
Handb Clin Neurol ; 186: 407-431, 2022.
Article in English | MEDLINE | ID: mdl-35772899

ABSTRACT

Thoraco-abdominal aneurysm (TAA) repair carries a significant risk of spinal cord infarction. The latter results from irreversible changes in the spinal cord arterial network, e.g., sacrifice of the segmental arteries. Intra-operative neurophysiology with somatosensory and especially motor evoked potential (SEP and MEP respectively) monitoring, has emerged as an effective tool to assess the efficiency of the collateral blood flow, detect reversible spinal cord ischemia and guide the peri-operative multidisciplinary management to prevent postoperative paraplegia. The main roles of such monitoring include diagnosis of spinal cord vs peripheral limb ischemia, titration of mean arterial pressure during aortic clamping, the guidance of selective re-implantation of critical segmental arteries, and management of hemodynamics in the immediate postoperative period. In addition, manipulation of the aortic arch and proximal descending aorta, adds the risk of cerebral infarction from both low flow state and/or thromboembolic events. As such, EEG monitoring may be a useful add-on for either assessment of the efficiency of cerebral cooling as a neuroprotective method and/or for detection and treatment of reversible cerebral ischemia. This chapter presents the multimodality approach to open TAA monitoring as a versatile tool for the prevention of devastating postoperative neurologic deficits.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm, Thoracic , Spinal Cord Ischemia , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/surgery , Evoked Potentials, Motor/physiology , Humans , Ischemia , Monitoring, Intraoperative/methods , Spinal Cord/blood supply , Spinal Cord Ischemia/prevention & control , Spinal Cord Ischemia/surgery
11.
Clin Neurophysiol ; 136: 150-157, 2022 04.
Article in English | MEDLINE | ID: mdl-35168029

ABSTRACT

OBJECTIVE: To investigate whether barques can be localized across the hippocampal longitudinal axis with sufficient specificity. METHODS: We identified 51 focal epilepsy patients implanted with a minimum of two electrodes - unilateral anterior and posterior - in either hippocampus. We used visual inspection of the intracranial electroencephalogram (iEEG) and 3D brain volume spectrum-based statistical parametric mapping (SPM) to localize barques. RESULTS: In 18/51 patients (35.29%), barques were identified in 22/70 (31.42%) hippocampi. In all hippocampi (100%), barques were present in the posterior hippocampus, while 9 (40.90%) showed concurrent non-independent barque activity anteriorly (P < 0.0001). Statistical parametric mapping confirmed the posterior barque localization, with significant differences in t-values (t(27) = 8.08, P < 0.0001) and z-scores (t(24) = 6.85, P < 0.0001) between anterior and posterior hippocampal barque activity. Posterior lateral extrahippocampal contacts demonstrated phase reversals of positive polarity during barque activity (P = 0.0092, compared to anterior extrahippocampal contacts). CONCLUSIONS: This study highlights the posterior hippocampal predominance of barques. Our findings are concordant with the posterior distribution of the scalp manifestation of barques as "14&6/sec positive spikes". The posterio-lateral hippocampal barque phase reversal can explain the positive polarity of scalp 14&6/sec spikes. SIGNIFICANCE: Understanding the properties of barques is critical for the iEEG interpretation in epilepsy surgery evaluations that include the hippocampus.


Subject(s)
Epilepsies, Partial , Hippocampus , Electrodes , Electroencephalography , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Hippocampus/diagnostic imaging , Hippocampus/surgery , Humans , Magnetic Resonance Imaging , Scalp
12.
Clin Neurophysiol ; 132(12): 3002-3009, 2021 12.
Article in English | MEDLINE | ID: mdl-34715425

ABSTRACT

OBJECTIVE: To assess whether hippocampal spindles and barques are markers of epileptogenicity. METHODS: Focal epilepsy patients that underwent stereo-electroencephalography implantation with at least one electrode in their hippocampus were selected (n = 75). The occurrence of spindles and barques in the hippocampus was evaluated in each patient. We created pairs of pathologic and pathology-free groups according to two sets of criteria: 1. Non-invasive diagnostic criteria (patients grouped according to focal epilepsy classification). 2. Intracranial neurophysiological criteria (patient's hippocampi grouped according to their seizure onset involvement). RESULTS: Hippocampal spindles and barques appear equally often in both pathologic and pathology-free groups, both for non-invasive (Pspindles = 0.73; Pbarques = 0.46) and intracranial criteria (Pspindles = 0.08; Pbarques = 0.26). In Engel Class I patients, spindles occurred with similar incidence both within the non-invasive (P = 0.67) and the intracranial criteria group (P = 0.20). Barques were significantly more frequent in extra-temporal lobe epilepsy defined by either non-invasive (P = 0.01) or intracranial (P = 0.01) criteria. CONCLUSIONS: Both spindles and barques are normal entities of the hippocampal intracranial electroencephalogram. The presence of barques may also signify lack of epileptogenic properties in the hippocampus. SIGNIFICANCE: Understanding that hippocampal spindles and barques do not reflect epileptogenicity is critical for correct interpretation of epilepsy surgery evaluations and appropriate surgical treatment selection.


Subject(s)
Brain Waves/physiology , Epilepsies, Partial/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Hippocampus/physiopathology , Adult , Electrocorticography , Epilepsies, Partial/surgery , Epilepsy, Temporal Lobe/surgery , Female , Hippocampus/surgery , Humans , Male , Middle Aged , Young Adult
13.
Clin Neurophysiol ; 132(11): 2916-2931, 2021 11.
Article in English | MEDLINE | ID: mdl-34419344

ABSTRACT

OBJECTIVE: Interictal discharges (IIDs) and high frequency oscillations (HFOs) are established neurophysiologic biomarkers of epilepsy, while microseizures are less well studied. We used custom poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) microelectrodes to better understand these markers' microscale spatial dynamics. METHODS: Electrodes with spatial resolution down to 50 µm were used to record intraoperatively in 30 subjects. IIDs' degree of spread and spatiotemporal paths were generated by peak-tracking followed by clustering. Repeating HFO patterns were delineated by clustering similar time windows. Multi-unit activity (MUA) was analyzed in relation to IID and HFO timing. RESULTS: We detected IIDs encompassing the entire array in 93% of subjects, while localized IIDs, observed across < 50% of channels, were seen in 53%. IIDs traveled along specific paths. HFOs appeared in small, repeated spatiotemporal patterns. Finally, we identified microseizure events that spanned 50-100 µm. HFOs covaried with MUA, but not with IIDs. CONCLUSIONS: Overall, these data suggest that irritable cortex micro-domains may form part of an underlying pathologic architecture which could contribute to the seizure network. SIGNIFICANCE: These results, supporting the possibility that epileptogenic cortex comprises a mosaic of irritable domains, suggests that microscale approaches might be an important perspective in devising novel seizure control therapies.


Subject(s)
Brain Mapping/methods , Brain/physiopathology , Electroencephalography/methods , Epilepsy/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Microelectrodes , Adult , Brain/surgery , Electroencephalography/instrumentation , Epilepsy/diagnosis , Epilepsy/surgery , Female , Humans , Intraoperative Neurophysiological Monitoring/instrumentation , Male , Middle Aged , Young Adult
14.
Clin Neurophysiol ; 132(7): 1416-1432, 2021 07.
Article in English | MEDLINE | ID: mdl-34023624

ABSTRACT

OBJECTIVE: Neuromonitoring of primary motor regions allows preservation of motor strength and is frequently employed during cranial procedures. Less is known about protection of sensory function and ability to modulate movements, both of which rely on integrity of thalamocortical afferents (TCA) to fronto-parietal regions. We describe our experience with TCA monitoring and their cortical relays during brain tumor surgery. METHODOLOGY: To study its feasibility and usefulness, continuous somatosensory evoked potentials (SSEP) recording via a subdural electrode was attempted in 32 consecutive patients. RESULTS: Median and posterior tibial SSEP were successfully monitored in 31 and 17 patients respectively. SSEP improved lesion localization and prevented unnecessary cortical stimulation in 9 and 16 cases respectively. A threshold of ≥30% SSEP amplitude decrease influenced management in 10 patients while a decrement of ≥50 % had a sensitivity of 0.89 and specificity of 1 in detecting worsening of sensory function. Simultaneous motor evoked potentials (MEP) and SSEP monitoring were performed in 10 cases, 9 of which showed short-lived fluctuations of the former. CONCLUSION: Direct cortical SSEP monitoring is feasible, informs management and predicts outcome. SIGNIFICANCE: Early intervention prevents sensory deficit. Concomitant MEP fluctuations may reflect modulation of motor activity by TCA.


Subject(s)
Brain Neoplasms/surgery , Craniotomy/methods , Evoked Potentials, Somatosensory/physiology , Intraoperative Neurophysiological Monitoring/methods , Motor Cortex/physiology , Thalamus/physiology , Adult , Aged , Aged, 80 and over , Brain Neoplasms/physiopathology , Electrocorticography/methods , Feasibility Studies , Female , Humans , Male , Middle Aged , Retrospective Studies
15.
Oper Neurosurg (Hagerstown) ; 20(2): 219-225, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33269396

ABSTRACT

BACKGROUND: Subcortical mapping of the corticospinal tract has been extensively used during craniotomies under general anesthesia to achieve maximal resection while avoiding postoperative motor deficits. To our knowledge, similar methods to map the thalamocortical tract (TCT) have not yet been developed. OBJECTIVE: To describe a neurophysiologic technique for TCT identification in 2 patients who underwent resection of frontoparietal lesions. METHODS: The central sulcus (CS) was identified using the somatosensory evoked potentials (SSEP) phase reversal technique. Furthermore, monitoring of the cortical postcentral N20 and precentral P22 potentials was performed during resection. Subcortical electrical stimulation in the resection cavity was done using the multipulse train (case #1) and Penfield (case #2) techniques. RESULTS: Subcortical stimulation within the postcentral gyrus (case #1) and in depth of the CS (case #2), resulted in a sudden drop in amplitudes in N20 (case #1) and P22 (case #2), respectively. In both patients, the potentials promptly recovered once the stimulation was stopped. These results led to redirection of the surgical plane with avoidance of damage of thalamocortical input to the primary somatosensory (case #1) and motor regions (case #2). At the end of the resection, there were no significant changes in the median SSEP. Both patients had no new long-term postoperative sensory or motor deficit. CONCLUSION: This method allows identification of TCT in craniotomies under general anesthesia. Such input is essential not only for preservation of sensory function but also for feedback modulation of motor activity.


Subject(s)
Evoked Potentials, Motor , Monitoring, Intraoperative , Brain Mapping , Craniotomy , Evoked Potentials, Somatosensory , Humans
16.
J Clin Neurosci ; 74: 225-231, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31973921

ABSTRACT

OBJECT: Spinal cord surgeries carry a high risk for significant neurological impairments. The initial techniques for spinal cord mapping emerged as an aid to identify the dorsal columns and helped select a safe myelotomy site in intramedullary tumor resection. Advancements in motor mapping of the cord have also been made recently, but exclusively with tumor surgery. We hereby present our experiences with dynamic mapping of the corticospinal tract (CST) in other types of spinal cord procedures that carry an increased risk of postoperative motor deficit, and thus could directly benefit from this technique. CASE REPORTS: Two patients with intractable unilateral lower extremity pain due to metastatic disease of the sacrum and a thoraco-lumbar chordoma, respectively underwent thoracic cordotomy to interrupt the nociceptive pathways. A third patient with progressive leg weakness underwent cord untethering and surgical repair of a large thoracic myelomeningocele. In all three cases, multimodality intraoperative neurophysiologic testing included somatosensory and motor evoked potentials monitoring as well as dynamic mapping of the CST. CONCLUSION: CST mapping allowed safe advancement of the cordotomy probe and exploration of the meningocele sac with untethering of the anterior-lateral aspect of the cord respectively, resulting in postoperative preservation or improvement of motor strength from the pre-operative baseline. Stimulus thresholds varied likely with the distance between the stimulating probe and the CST as well as with the baseline motor strength in the mapped myotomes.


Subject(s)
Cordotomy , Meningomyelocele/surgery , Neurosurgical Procedures/methods , Pyramidal Tracts/anatomy & histology , Pyramidal Tracts/physiopathology , Aged , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged , Monitoring, Intraoperative/methods , Pyramidal Tracts/surgery , Spinal Nerve Roots/anatomy & histology , Spinal Nerve Roots/physiopathology
17.
Clin Neurophysiol ; 130(6): 1058-1065, 2019 06.
Article in English | MEDLINE | ID: mdl-30930194

ABSTRACT

OBJECTIVE: Intraoperative mapping via electrical stimulation is the gold standard technique for surgeries close to the eloquent cortex. However, it can trigger seizures which immediately impact patient's safety. We studied whether administration of antiepileptic drugs (AED) prior to and/or at the beginning of the surgery decreases the probability of triggering seizures, while adjusting for other risk factors. METHODS: 544 consecutive intraoperative mapping cases performed at a tertiary care center for epilepsy and brain tumor surgery were included in the study. Using a multivariate logistic regression analysis, we analyzed the independent impacts of AED loading at time of surgery, preoperative AED maintenance, history of seizures, type of stimulation paradigm, lobar location of stimulation, age, opioid administration and pathology on the probability of triggering seizures. RESULTS: Seizures were identified in 135 patients. Intravenous loading with AED decreased the odds of triggering seizures by 45% (OR = 0.55, p = 0.01), Penfield (versus multipulse train) stimulation and diffuse (versus well circumscribed) pathology increased it twice (OR = 1.97, p = 0.01) and 2.4 times (OR = 2.42, p = 0.003) respectively. No other factors had a significant impact. CONCLUSIONS: Seizures triggered during mapping occur frequently and are multifactorial. SIGNIFICANCE: Loading with AED independently reduces the risk of their occurrence.


Subject(s)
Brain Mapping/standards , Brain/surgery , Intraoperative Complications/prevention & control , Intraoperative Neurophysiological Monitoring/standards , Seizures/surgery , Adult , Brain/physiopathology , Brain Mapping/adverse effects , Electric Stimulation/adverse effects , Female , Humans , Intraoperative Complications/etiology , Intraoperative Complications/physiopathology , Intraoperative Neurophysiological Monitoring/adverse effects , Male , Middle Aged , Retrospective Studies , Risk Factors , Seizures/diagnosis , Seizures/physiopathology
18.
J Neurosurg ; 132(4): 1017-1023, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30925466

ABSTRACT

OBJECTIVE: Intraoperative seizures during craniotomy with functional mapping is a common complication that impedes optimal tumor resection and results in significant morbidity. The relationship between genetic mutations in gliomas and the incidence of intraoperative seizures has not been well characterized. Here, the authors performed a retrospective study of patients treated at their institution over the last 12 years to determine whether molecular data can be used to predict the incidence of this complication. METHODS: The authors queried their institutional database for patients with brain tumors who underwent resection with intraoperative functional mapping between 2005 and 2017. Basic clinicopathological characteristics, including the status of the following genes, were recorded: IDH1/2, PIK3CA, BRAF, KRAS, AKT1, EGFR, PDGFRA, MET, MGMT, and 1p/19q. Relationships between gene alterations and intraoperative seizures were evaluated using chi-square and two-sample t-test univariate analysis. When considering multiple predictive factors, a logistic multivariate approach was taken. RESULTS: Overall, 416 patients met criteria for inclusion; of these patients, 98 (24%) experienced an intraoperative seizure. Patients with a history of preoperative seizure and those treated with antiepileptic drugs prior to surgery were less likely to have intraoperative seizures (history: OR 0.61 [95% CI 0.38-0.96], chi-square = 4.65, p = 0.03; AED load: OR 0.46 [95% CI 0.26-0.80], chi-square = 7.64, p = 0.01). In a univariate analysis of genetic markers, amplification of genes encoding receptor tyrosine kinases (RTKs) was specifically identified as a positive predictor of seizures (OR 5.47 [95% CI 1.22-24.47], chi-square = 5.98, p = 0.01). In multivariate analyses considering RTK status, AED use, and either 2007 WHO tumor grade or modern 2016 WHO tumor groups, the authors found that amplification of the RTK proto-oncogene, MET, was most predictive of intraoperative seizure (p < 0.05). CONCLUSIONS: This study describes a previously unreported association between genetic alterations in RTKs and the occurrence of intraoperative seizures during glioma resection with functional mapping. Future models estimating intraoperative seizure risk may be enhanced by inclusion of genetic criteria.

19.
J Clin Monit Comput ; 33(2): 191-192, 2019 04.
Article in English | MEDLINE | ID: mdl-30778916

ABSTRACT

The article Is the new ASNM intraoperative neuromonitoring supervision "guideline" a trustworthy guideline? A commentary, written by Stanley A. Skinner, Elif Ilgaz Aydinlar, Lawrence F. Borges, Bob S. Carter, Bradford L. Currier, Vedran Deletis, Charles Dong, John Paul Dormans, Gea Drost, Isabel Fernandez­Conejero, E. Matthew Hoffman, Robert N. Holdefer, Paulo Andre Teixeira Kimaid, Antoun Koht, Karl F. Kothbauer, David B. MacDonald, John J. McAuliffe III, David E. Morledge, Susan H. Morris, Jonathan Norton, Klaus Novak, Kyung Seok Park, Joseph H. Perra, Julian Prell, David M. Rippe, Francesco Sala, Daniel M. Schwartz, Martín J. Segura, Kathleen Seidel, Christoph Seubert, Mirela V. Simon, Francisco Soto, Jeffrey A. Strommen, Andrea Szelenyi, Armando Tello, Sedat Ulkatan, Javier Urriza and Marshall Wilkinson, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 05 January 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 30 January 2019 to © The Author(s) 2019 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The original article has been corrected.

SELECTION OF CITATIONS
SEARCH DETAIL
...