Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 112(16): 2721-2731.e5, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38901431

ABSTRACT

The ventral tegmental area (VTA) is a critical node in circuits governing motivated behavior and is home to diverse populations of neurons that release dopamine, gamma-aminobutyric acid (GABA), glutamate, or combinations of these neurotransmitters. The VTA receives inputs from many brain regions, but a comprehensive understanding of input-specific activation of VTA neuronal subpopulations is lacking. To address this, we combined optogenetic stimulation of select VTA inputs with single-nucleus RNA sequencing (snRNA-seq) and highly multiplexed in situ hybridization to identify distinct neuronal clusters and characterize their spatial distribution and activation patterns. Quantification of immediate-early gene (IEG) expression revealed that different inputs activated select VTA subpopulations, which demonstrated cell-type-specific transcriptional programs. Within dopaminergic subpopulations, IEG induction levels correlated with differential expression of ion channel genes. This new transcriptomics-guided circuit analysis reveals the diversity of VTA activation driven by distinct inputs and provides a resource for future analysis of VTA cell types.


Subject(s)
Genes, Immediate-Early , Optogenetics , Ventral Tegmental Area , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/cytology , Animals , Mice , Optogenetics/methods , Dopaminergic Neurons/metabolism , Male , Neurons/metabolism , Mice, Inbred C57BL , Sequence Analysis, RNA/methods
2.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293241

ABSTRACT

Because opioid withdrawal is an intensely aversive experience, persons with opioid use disorder (OUD) often relapse to avoid it. The lateral septum (LS) is a forebrain structure that is important in aversion processing, and previous studies have linked the lateral septum (LS) to substance use disorders. It is unclear, however, which precise LS cell types might contribute to the maladaptive state of withdrawal. To address this, we used single-nucleus RNA-sequencing to interrogate cell type specific gene expression changes induced by chronic morphine and withdrawal. We discovered that morphine globally disrupted the transcriptional profile of LS cell types, but Neurotensin-expressing neurons (Nts; LS-Nts neurons) were selectively activated by naloxone. Using two-photon calcium imaging and ex vivo electrophysiology, we next demonstrate that LS-Nts neurons receive enhanced glutamatergic drive in morphine-dependent mice and remain hyperactivated during opioid withdrawal. Finally, we showed that activating and silencing LS-Nts neurons during opioid withdrawal regulates pain coping behaviors and sociability. Together, these results suggest that LS-Nts neurons are a key neural substrate involved in opioid withdrawal and establish the LS as a crucial regulator of adaptive behaviors, specifically pertaining to OUD.

SELECTION OF CITATIONS
SEARCH DETAIL